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under the direction of
Mr. Chiheon Kim

Department of Mathematics
Massachusetts Institute of Technology

Research Science Institute
August 2, 2016



Abstract

The paper deals with a problem proposed by Uriel Feige in 2005: if X1, . . . , Xn is a set
of independent nonnegative random variables with expectations equal to 1, is it true that
P (
∑n

i=1 Xi < n + 1) > 1
e
? He proved that P (

∑n
i=1Xi < n + 1) > 1

13
. In this paper we prove

that infimum of the P (
∑n

i=1Xi < n + 1) can be achieved when all random variables have
only two possible values, and one of them is 0. We also give a partial solution to the case
when all random variables are equally distributed. We prove that the inequality holds when
n goes to infinity and provide numerical evidence that the probability decreases when n
increases.

Summary

This paper deals with a problem in probability theory that is applicable to analysis of the
stock exchange. To illustrate the main idea with a simple example, imagine the following
situation. You buy a random stock for one dollar, and then sell it the following day. You
can repeat the whole procedure as many times as you wish, but the only information you
have is that the expected price of your stock is one dollar. Your goal is to earn at least one
dollar, and you want to find the minimum chance that you fail. In fact, an Israeli computer
scientist Uriel Feige, asked this question in 2005. Numerical evidence shows that the chance
of failure is at least about 37 % . We show that the minimum possible chance of failure,
can be achieved when there are at most two possible scenarios every day. We also give the
partial solution in the case, where we additionally assume that the stock exchange behaves
identically every day.



1 Introduction

1.1 Historical outline

The theory of probability emerged as a result of a conversation between famous French

mathematician Blaise Pascal and a friend of his, who was interested in gaming and gambling.

He asked the following question involving a popular dice game.

Example 1. Imagine that you throw a pair of dice 24 times. Should you bet even money on

the occurrence of at least one double six ?

This problem led to a correspondence between Blaise Pascal and Pierre de Fermat, which

resulted in the formulation of first principles of probability theory. Because of people’s inter-

est in gambling games, probability theory soon became popular. In 1812, Pierre de Laplace

introduced new probabilistic ideas, and applied them to many scientific and practical prob-

lems in his book Théorie Analytique des Probabilités [1]. Wide applications of probability

theory to statistics, genetics, psychology, economics, and engineering led to its rapid devel-

opment. Some of the most important mathematicians who contributed to this development

were Chebyshev, Markov, and von Mises. The most challenging problem in probability the-

ory was to develop a definition of probability precise enough for use in mathematics and

comprehensive enough to be applicable to a wide range of phenomena. This problem was

solved by the Russian mathematician Andrey Nikolaevich Kolmogorov, who formulated ax-

ioms of the modern probability theory [2]. This paper deals with one of the fundamental

issues in probability theory, which is a random variable.

1.2 Motivation and background

A random variable is associated with a set of its possible values, and the probabilities related

to them. If we denote by X the random variable taking value x1 with probability p1, value
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x2 with probability p2, and so on, up to value xk with probability pk, then the mathematical

expectation of X, denoted by E[X], is defined as

E[X] =
k∑

i=1

xipi.

Let us illustrate this definition in the case of a die.

Example 2. A roll of a die is a random variable, whose possible values are integers from 1

to 6, each with probability 1
6
. Thus, the expectation of X is

E[X] =
6∑

i=1

1

6
i =

21

6
= 3.5.

This paper deals with sums of independent random variables. Our purpose is to bound

the probability that the sum of values of n independent random variables is less than the

sum of their expectation increased by 1. Let us return to rolling a die.

Example 3. Imagine that you roll two dice. We denote them as random variables X1 and

X2. Notice that the sum of their expectations is equal to 7. The probability that the sum of

numbers on two dice is less then 8 is

1 + 2 + 3 + 4 + 5 + 6

6 · 6
=

21

36
=

7

12
.

Of course, the random variables can be different from each other (for example rolling a

die and throwing a coin). Moreover, for a given random variable X, its values may be very

different from its expectation, and the probability that value of X exceeds its expectation

may be arbitrarily close to 1. The distribution of probability of the random variables may

also depend on their number. In this paper, we only assume that their expected values are

equal to 1 (notice that a die does not follow this assumption).
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Let us illustrate the main idea with an example of the stock exchange.

Example 4. Imagine you buy a random stock for one dollar, and then sell it the following

day. You can repeat the whole procedure as many times as you wish, but the only information

you have is that the expected price of your stock is one dollar. Your goal is to earn at least

one dollar, and you would like to know the least possible chance of failure.

In this example, we treat a price of your stock as a random variable. Suppose, you repeat

the procedure n times. One possible scenario is that every day your stock is worth n + 1

dollars, with probability 1
n+1

, and nothing otherwise. You fail if and only if you lose every

single day. Thus, the probability that you fail is equal to (1− 1
n+1

)n, which converges to 1
e
,

while n goes to infinity. We presume, that this is the boundary case. Let us formulate this

in the following conjecture, stated by Uriel Feige [3].

Conjecture. Let X1, . . . , Xn be a collection of nonnegative random variables with expecta-

tions equal to 1. Then the following inequality holds:

P

(
n∑

i=1

Xi < n + 1

)
>

1

e
.

1.3 Previous results and applications

In his paper, Uriel Feige proves that the answer to our question is more than 1
13

, and states

the conjecture that it is equal to 1
e
. He also shows how to apply the inequality to find those

edges in a network that belong to many shortest paths [3]. In his paper, John H. Elton

investigates the case when all the random variables are identically distributed, and can have

only integer values [4]. Samuels proves the Conjecture when the number of random variables

is at most four [5].
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1.4 Statement of results

In section 2, we formally define notations introduced in the introduction . In section 3, we

present how to prove that the minimum P (
∑n

i=1Xi < n + 1) can be achieved when when

all random variables have at most two possible values, one of which is 0. In section 4, we

generalize John H. Elton’s result to the real valued case, when n goes to the infinity.

2 Preliminaries

Formally, a discrete random variable X is associated with a set VX that denotes its possible

values, and a probability density function pX : VX → R such that pX(v) = P(X = v)

denotes the probability that X has value v. The expectation of X is the average of all

its possible values weighted by the possibility of obtaining them. More formally, we write

E[X] =
∑

v∈VX
vpX(v). In our paper, we consider independent random variables X1, . . . , Xn,

such that E[Xi] = 1 and Xi > 0 for any 1 6 i 6 n. Let a be a real number and a > 1. We

define Xa to be the following distribution:

Xa =


a with probability 1

a

0 with probability a−1
a
.

3 Reduction of the random variables

In this section, we show that P (
∑n

i=1Xi < n + 1) can be minimized with the additional

assumption that each Xi’s distribution is in the form of Xai for some ai > 1. To achieve this,

we introduce three Lemmas.

Lemma 3.1. The random variable X1 can be replaced by another random variable X ′1, which
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takes only two possible values, such that

P

(
X ′1 +

n∑
i=2

Xi < n + 1

)
6 P

(
n∑

i=1

Xi < n + 1

)
.

Proof. Let us fix the random variables X2, . . . , Xn. Let VX1 = {v1, . . . , vk} be a set of all

possible values of X1 with a probability density function pX1 : VX1 → R. Let a1, . . . , ak be ai =

P (
∑n

i=2 Xi < n + 1− vi) and y1, . . . , yk be yi = pX1(vi). We will treat ai as constants and yi

as variables. We want to choose the values of yi (i = 1, . . . , k) so that P (
∑n

i=1Xi < n + 1)

is minimized. This problem can be formulated in terms of linear programing as follows:

Minimize
k∑

i=1

aiyi

subject to E[X1] =
k∑

i=1

viyi = 1,

k∑
i=1

yi = 1,

yi > 0.

In Lemma 3.2, we prove that there is an optimal solution in the case where at most two yi

are not equal to 0. To complete the proof, we choose VX1 = VX′
1

and px′
1
(vi) = yi.

Lemma 3.2. Let y =


y1
...

yk

 and I be a k by k identity matrix. Then the following linear
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programing problem has an optimal solution y, where at most two of yi are not equal to 0.

Minimize

[
a1 . . . ak

]
y

subject to

v1 . . . vk

1 . . . 1

 y =

1

1

 ,

I y >


0

...

0

 .

Proof. Any row vector is considered to be a constraint. A feasible solution to a linear program

is such y that satisfies all the constraints. A constraint of a linear program is active for a

certain solution y if it meets with equality. A solution to a linear program is basic if it satisfies

the following conditions:

• All the equality constraints are active.

• There are k linearly independent active constraints.

Note that the basic solutions are the vertices of a polyhedron. It is known that if there exists

an optimal feasible solution and a basic feasible solution, then there exists a solution that

is both basic and optimal [6]. Since the objective function is equal to P (
∑n

i=1 Xi < n + 1),

which is between 0 and 1, there exists an optimal solution. If vi = 1 for some i, we can choose

y, such that yi = 1 and yj = 0 for any j 6= i, which is a basic feasible solution. If there exist

no such vi then there must exist such vi and vj that vi < 1 < vj. We choose such y that


yi + yj = 1

viyi + vjyj = 1

,
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and yl = 0 if l 6= i and l 6= j. Since the vectors

vi
vj

 and

1

1

 are linearly independent, y is a

basic feasible solution. Hence, there is an optimal and basic feasible solution y. Note that at

least k of the constraints are active for y, but there are only two equality constraints. Thus,

at most two of the inequalities do not meet the equality.

Lemma 3.3. If X1 is a random variable with only two possible values, we can replace one

of them by 0, and increase the other one so that P(
∑n

i=1Xi < n + 1) does not increase, and

E[X1] will remain 1.

Proof. Let a, b, p be real numbers such that a > b > 0 and

X1 =


a with probability p

b with probability 1− p.

Now we replace X1 with a variable X ′1 ∼ X1/p. Since E[X1] = ap+b(1−p) = 1 and 0 6 p 6 1

then b 6 a 6 1
p
.

Now, we have

P

(
n∑

i=1

Xi < n + 1

)
= p P

(
n∑

i=2

Xi < n + 1− a

)
+ (1− p) P

(
n∑

i=2

Xi < n + 1− b

)

> p P

(
n∑

i=2

Xi < n + 1− 1

p

)
+ (1− p) P

(
n∑

i=2

Xi < n + 1− 1

p

)

> p P

(
n∑

i=2

Xi < n + 1− 1

p

)

= P

(
X ′1 +

n∑
i=2

Xi < n + 1

)
.
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Theorem 1. Let X1, . . . , Xn be random variables with E[Xi] = 1 and Xi ≥ 0. Then

P

(
n∑

i=1

X ′i < n + 1

)
6 P

(
n∑

i=1

Xi < n + 1

)
,

where X ′i ∼ Xai for some choice of a1 . . . an.

Proof. If there exists any Xi such that Xi 6= Xa for any a, we can swap it with X1 and then

apply Lemma 3.3 and Lemma 3.1. We repeat this step until there is no such Xi.

From now on we can assume that every random variable has only two possible values,

and one of them is 0.

4 Identically distributed case

In this section, we investigate the case when all variables are identically distributed. More

formally we assume that X1, . . . , Xn ∼ Xa where a is some real number. Then,
∑n

i=1 Xi <

n + 1 if and only if less than dn+1
a
e of Xi’s are equal to a. Thus, if we decrease the value

of a while dn+1
a
e remain unchanged, then P(

∑n
i=1 Xi < n + 1) decreases because P(Xi 6= a)

decreases. Therefore, we can assume that a = n+1
k

, where k is an integer between 1 and n.

This allows us to give an explicit formula,

P

(
n∑

i=1

Xi < n + 1

)
=

k−1∑
i=0

(
n

i

)(
k

n + 1

)i(
n + 1− k

n + 1

)n−i

.

In this section, we prove that when k is fixed, the limit of the above sum is greater than 1
e
,

when n goes to infinity. Before we prove this, we introduce two lemmas.

Lemma 4.1. For any positive integers k, i where i 6 k, we have

lim
n→∞

n!

(n− i)!
· (n + 1− k)n−i

(n + 1)n
=

1

ek
.
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Proof. Note that

lim
n→∞

n!

(n− i)!
· (n + 1− k)n−i

(n + 1)n
= lim

n→∞

n!

(n− i)!(n + 1)i
· lim
n→∞

(n + 1− k)n−i

(n + 1)n−i
(1)

= lim
n→∞

(n + 1− k)n−i

(n + 1)n−i
(2)

= lim
n→∞

(
n + 1− k

n + 1

)n

· lim
n→∞

(
n + 1− k

n + 1

)−i
(3)

= lim
n→∞

(
n + 1− k

n + 1

)n

(4)

=
1

ek
. (5)

Equality (2) holds because n!
(n−i)! and (n+1)i are polynomials with equal leading coefficients.

Equality (4) holds because

lim
n→∞

(
n + 1− k

n + 1

)−i
= lim

n→∞

(
1− k

n + 1

)−i
= 1.

Equality (5) holds in virtue of the following induction on k.

Base case k = 1: If k = 1 then

lim
n→∞

(
n

n + 1

)n

= lim
n→∞

1(
1 + 1

n

)n =
1

e

Inductive hypothesis: Suppose the theorem holds for all values of k up to some m, m > 1.
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Inductive step: Let k = m + 1. We have

lim
n→∞

(
n + 1− k

n + 1

)n

= lim
n→∞

(
n + 1− (k − 1)

n + 1

)n

· lim
n→∞

(
n + 1− k

n + 2− k

)n

=
1

ek−1
· lim
n→∞

(
1− 1

n + 2− k

)n

=
1

ek−1
· lim
n→∞

(
1− 1

n + 2− k

)n+2−k

· lim
n→∞

(
1− 1

n + 2− k

)k−2

=
1

ek
.

The theorem holds for k = m + 1. By the principle of mathematical induction, the theorem

holds for all k ∈ N.

Lemma 4.2. For any integer k with k > 1, we have

k−1∑
i=0

ki

i!
>

1

ek−1
.

Proof. This proof is a simplification of the result from K. P. Choi’s paper [7]. Using the

Taylor expansion of function ex and the integral formula for the residue, we get

ek =
∞∑
i=0

ki

i!
=

k−1∑
i=0

ki

i!
+

∫ k

0

et · (k − t)k−1

(k − 1)!
dt.

Function Γ(k) =
∫∞
0

e−ttk−1dt is an extension of factorial function and Γ(k) = (k− 1)! when

k is a positive integer. Thus, ∫ ∞
0

e−ttk−1dt

(k − 1)!
= 1.
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By replacing t with k − t, we obtain

k−1∑
i=0

ki

i!
= ek −

∫ k

0

ek−t · tk−1

(k − 1)!
dt

= ek
(

1−
∫ k

0

e−ttk−1dt

(k − 1)!

)
= ek

(∫ ∞
0

e−ttk−1dt

(k − 1)!
−
∫ k

0

e−ttk−1dt

(k − 1)!

)
=

ek

(k − 1)!

∫ ∞
k

e−ttk−1dt.

Let

ak = e−k
k−1∑
i=0

ki

i!
=

1

(k − 1)!

∫ ∞
k

e−ttk−1dt.

Notice a1 = 1
e
. We prove that ak is increasing sequence by showing that ak − ak−1 > 0.

(k − 1)!(ak − ak−1) =

∫ ∞
k

e−ttk−1dt− (k − 1)

∫ ∞
k−1

e−ttk−2dt (6)

=

∫ ∞
k

e−ttk−1dt−
∫ ∞
k−1

e−t(tk−1)′dt (7)

=

∫ ∞
k

e−ttk−1dt−
(
e−ttk−1

∣∣∞
k−1 +

∫ ∞
k−1

e−ttk−1dt

)
(8)

= e−(k−1)(k − 1)k−1 −
∫ k

k−1
e−ttk−1dt (9)

=

∫ k

k−1
e−(k−1)(k − 1)k−1 − e−ttk−1dt (10)

> 0. (11)

Equality (8) follows from integration by parts. Inequality (11) holds because f(t) = e−ttk−1

is a decreasing function on [k − 1, k].

Now we prove the following theorem.

Theorem 2. Fix k > 1. Let X1, . . . , Xn be identically distributed random variables, with
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distribution Xn+1
k

. Then,

lim
n→∞

P

(
n∑

i=1

Xi < n + 1

)
>

1

e
.

Proof. This theorem follows from Lemma 4.1 and Lemma 4.2. Note that

lim
n→∞

P

(
n∑

i=1

Xi < n + 1

)
= lim

n→∞

k−1∑
i=0

(
n

i

)(
k

n + 1

)i(
n + 1− k

n + 1

)n−i

(12)

= lim
n→∞

k−1∑
i=0

ki

i!
· n!

(n− i)!
· (n + 1− k)n−i

(n + 1)n
(13)

=
k−1∑
i=0

ki

i!
· 1

ek
(14)

>
1

e
. (15)

Equality (14) follows from Lemma 4.1. Inequality (15) follows form Lemma 4.2.

Let fk(n) = P(
∑n

i=1Xi < n + 1). We conjecture that fk(n) is a decreasing function in n,

which implies that P(
∑n

i=1Xi < n+1) > 1
e
. We provide some numerical evidences supporting

it (see figure 1-3).

Figure 1: Plot of the f1(n) function .
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Figure 2: Plot of the f10(n) function.

Figure 3: Plot of the f100(n)function.
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5 Conclusion

The results of our research could hopefully contribute to the study of the behavior of sums of

independent random variables. We have proved that P (
∑n

i=1Xi < n + 1) can be minimized

when all random variables have at most two possible values, one of which is 0. However, our

reduction does not take into account the assumption that random variables are identically

distributed. If the latter assumption holds, we have proved that

lim
n→∞

P

(
n∑

i=1

Xi < n + 1

)
>

1

e
.

As a natural extension of this project, we could generalize the result of the identically dis-

tributed case by scaling all the random variables by integer k tending to infinity. More

formally, let us formulate the following conjecture.

Conjecture. Let a1, . . . , an be real numbers greater than one. Then,

lim
k→∞

P

(
n∑

i=1

k∑
j=1

Xij < kn + 1

)
>

1

e
,

where Xij is a random variable with distribution Xkai.

If P(
∑n

i=1

∑k
j=1Xij < kn+1) is a decreasing function of n, then together with conjecture

it implies the Feige’s conjecture.
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