ON THE LOWER CENTRAL SERIES OF PI-ALGEBRAS

RUMEN RUMENOV DANGOVSKI

ABSTRACT. In this paper we study the lower central series {L;};>1 of algebras
with polynomial identities. More specifically, we investigate the_properties of
the quotients N; = M;/M;4+1 of successive ideals generated by the elements
L;. We give a complete description of the structure of these quotients for the
free metabelian associative algebra A/(A[A, A][A, A]). With methods from
Polynomial Identities theory, linear algebra and representation theory we also
manage to explain some of the properties of larger classes of algebras satisfying
polynomial identities.

1. SUMMARY

In this paper we consider algebraic structures which are not commutative, i.e. the
order of operations matters. Such structures are derived from quantum physics and
have various applications. In contrast, commutative structures appear in classical
physics and thus are better studied. We construct a series called the lower central
series which indicates the level of non-commutativity of an algebraic structure.
Our main result is a comprehensive description of important objects related to the
lower central series of the so called algebras with polynomial identities.

2. INTRODUCTION

The lower central series is a specific type of filtration of groups or algebras which
is of fundamental importance in group theory and non-commutative algebra. In
this paper we study the lower central series of Lie algebras. More specifically, we
consider the lower central series of free associative algebras with the additional
structure of Lie algebras induced by means of the commutator. Recently, there
has been substantial progress on the study of the properties of these filtrations
and their successive quotients ([7], [4], [6], [3]). For an associative algebra A, the
lower central series quotients have been seen to be related to both the geometry of
Spec(Aap), the spectrum of the abelianization of A, and the representation theory
of Der(A), the Lie algebra of derivations of A. Completely understanding the lower
central series of A and the information it encodes remains an elusive open problem.

Let A be an associative algebra over C with n generators. Set Li(A) := A and
define recursively L;(A) = [A, L;—1(A)], where the bracket operation is given by
the commutator [a,b] = ab — ba for a,b € A. Several series of quotients help us
understand how far A is from being a commutative algebra. In this paper we are
interested in the quotient series

{Bi(A) = Li(A)/Li1+1(A) }iz1 and {N;(A) = M;(A)/M;1(A)}ix1,

where M;(A) is the two-sided ideal generated by L;(A). The quotients B;(A) were

first studied by Feigin and Shoikhet [7]. They found an isomorphism between the

space A/M3(A) and the space of closed differential forms of positive even degree on
1
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C™. Etingof, Kim and Ma [6] gave an explicit description of the quotients A/My(A).
Dobrovolska, Kim, Ma and Etingof also studied the series B; [3, 4].

In this paper we are interested in algebras that satisfy polynomial identities or
PI-algebras. M. Dehn [2] first considered PI-algebras in 1922. His motivation came
from projective geometry. Specifically, Dehn observed that if the Desargues theorem
holds for a projective plane, we can build this plane from a division ring. Later, in
1936, W. Wagner [16] considered some identities for the quaternion algebras. The
actual development of the theory of Pl-algebras started with fundamental works
of N. Jacobson and I. Kaplansky in 1947-48 ([10], [12]). In PI theory we consider
several types of problems. Some of the feasible questions which we ask are about the
structure of the identities satisfied by a given algebra, the classes of algebras which
satisfy these identities, and the ideals generated by them. We consider Pl-algebras
as algebraic structures with induced identities on them. For more complete surveys
on Pl-algebras see the works of Drensky [5], Koshlukov [13] and Jacobson [11].

We study for the first time the lower central series of Pl-algebras. More specif-
ically, we are interested in the large classes of Pl-algebras — algebras of the form
A/ (M;(A) - M;(A)) and A/(A[L;(A), L;(A)]). To explain the motivation behind
studying Pl-algebras, consider the case when A is finitely generated by n elements.
Feigin and Shoikhet [7] describe an action of W,,, the Lie algebra of polynomial vec-
tor fields on C™, on the lower central series quotients of A. Therefore, the quotients
B;(A) can be considered in terms of the well-understood representation theory of
Wy, ([7], [6], [3]). The PI-Algebras A/(M;(A) - M;(A)) are of particular interest in
this setting because the structure of the commutator ideals M; allows the action of
W, to descend to these quotients. In particular, we hope to understand the lower
central series quotients in terms of the representation theory of W,,.

In this paper we prove the isomorphism N;(A/(M,,(A) - M;(A))) = N;(A) for
large enough. We show that B; and NN; are isomorphic for some specific algebras.
Our main result is the description of the structure of the quotient elements B; and
N; for the free metabelian associative algebra R 2, which is the associative PI-
algebra whose only relations are of the form [a, b][c,d] = 0. We describe the basis
for the elements N;(R22) and consider the growth of the dimensions of the graded
components for any number of generators. We use techniques from PI theory, linear
algebra and representation theory to prove our results.

The structure of this paper is as follows. In Section 3 we present the basic
definitions we need. In Section 4 we explain how we used computer calculations as
a basis for our conjectures. In Section 5 we consider the isomorphisms

In Section 6 we prove our main results. Namely, we give a complete description of
the lower central series properties of the free metabelian associative algebra Rs 2.
In Section 7 we formulate a conjecture which concerns the universal behavior of
the lower central series quotients for the Pl-algebras we consider. In Section 8
we present some additional results concerned with the action of the general linear

group.

3. PRELIMINARIES

In this section we introduce basic definitions used throughout the paper.
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All vector spaces will be over a field K of characteristic zero. If an algebra A
is equipped with an associative multiplication and has a multiplicative identity,
then we say that A is a unitary associative algebra. We denote the free associative
algebra on n generators x1,...,z, as A,. The bracket or commutator

[J:AxA— A

is [a,b] = ab — ba, where a,b € A. We consider the algebra A as a Lie algebra with
this bracket multiplication. See Appendix A for more detailed exposition on the
basic definitions.

Definition 3.1. The lower central series of an algebra A is the series of elements
{LZ(A)}121 defined by Ll(A) = A and LL(A) = [A,Li_l(A)] for i Z 1.

We consider the series {M;(A)}i>1 of the two-sided ideals generated by L, i.e.
M;(A) =A-L;(A) - A. Due to the identity [B,cd] + ¢[d, B] = [B,c|d for B € L;_4
and ¢,d € A, the two-sided ideal M; is actually a left-sided (right-sided) one.

Definition 3.2. Let the series {IV;(A)}i>1 be the quotients of successive elements
in the series {M;(A)};>1, i.e.

Ni(A) = M;(A)/M;41(A).

A closely related series of quotients are the B-series {B;(A)};>1, which we define
as
Bi(A) = Li(A)/Li+1(A).
In this paper we consider the lower central series of algebras with polynomial
identities.

Definition 3.3. For a polynomial f = f(z1,...,,,) in the free associative algebra
A, f is a polynomial identity for an associative algebra R if f(ry,...,rn) = 0 for
all elements r; of R.

If an associative algebra R satisfies a nontrivial polynomial identity, we say
that R is a Pl-algebra. We also study Pl-algebras with identities of the form
[a1,...,ai][b1,...,b;], where the a-elements and the b-elements are arbitrarily cho-
sen from A.

Definition 3.4. Let R; ;(A) denote the algebra R; ;(A) = A/(M;(A) - M;(A)).

In PI theory these objects are known as the relatively free algberas in the class
M, ; of algebras satisfying the identities of the form [aq, ..., a;][b1,...,b;] (see [5]).

The main goal of this paper is to provide a complete description of the lower
central series structure of Rz 2(A). This algebra is special in PI theory and we
call it the free metabelian associative algebra defined in the class M = My o of
all algebras, satisfying the metabelian identity [a,b][c,d] = 0. For convenience, we
write R; ; instead of R; ;(A) when we work with the free associative algebra A = A,,
on n generators.

We are also interested in the relatively free Pl-algebras which satisfy

[[(Ll, . ,ai], [bl, NN ,bj” =0.
These algebras are of the form A/(A-[L;(A),L;(A)]) and we write
Sij(A) = A/(A-[Li(A), L;j(A)]).

We may omit the algebra A in the notation and write S; ; only.
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4. PATTERNS IN THE LOWER CENTRAL SERIES OF PI-ALGEBRAS

The elements N;(R,,,;) are naturally graded by degree, i.e.
Ni(Rm1) = @D Ni(Bon) d),

d>0

where N;(R,,;)[d] is the subspace of N;(R,,,;) which consists of all elements of
degree d. The elements B;(R,,,;) exhibit the following analogous grading

Bi(Rpm1) = @ Bi(Rpm.1)[d].
d>0

The results in this project are motivated by computational data, which describes
the dimensions of the components of the gradings. We use the software MAGMA.
The first part of the research was to state a large number of conjectures about the
behavior of the algebras R; ; and S; ;. We managed to unify most of the them (see
Appendix B as well).

We consider representatives of the classes R; ; and S; ;. With N;(R)[d] we denote
the subspace of degree d in the grading of the space N;(R). In Appendix B we
give tables of dim N;(R)[d] for different algebras. There we explicitly describe the
patterns we have found. In this section we present some of the patterns for the free
metabelian associative algebra.

Element in the series: Degrees of grading;:
N;[d] 0123456 7 8 9
No[d] 0 012345 6 7 8
Ns[d] 0 00 2 46 8 10 12 14
Nyl[d] 0 000 3 6 9 12 15 18
N5ld] 0 00 0O 0 4 8 12 16 20
Ngld] 0000 O0O0 S5 10 15 20
N7[d] 0 00O O0OO0OO0 6 12 18
Nsl[d] 0 000O0OO0OO0O 0O 7 14
Nyl[d] 0 000OO0OO0OO0O O 0 8

TABLE 1. Calculations for Rs .

Table 1 presents the degrees of the components in the gradings of the element
N;(Rz2). We observe arithmetic progressions in the rows and we prove them in
Section 6.

As one can see, the information in Table 2 is the same as the one in Table 1. For
this reason we search for and prove isomorphisms between the elements B; and N;
for the algebras R,, 2, where m > 2.

5. GENERAL BEHAVIOR OF THE LOWER CENTRAL SERIES OF THE ALGEBRAS R, ;
AND S; ;

In this section we consider some general properties of the classes of algebras
{R;;} and {S;;}. There is an isomorphism between the first elements of the N-
series and the first elements of the respective series for the free associative algebra.
We prove results which let us obtain a connection with the known structure of the
N-series for the free associative algebra.
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Element in the series: Degrees of grading;:
B;[d] 01 2 3 45 6 7 8 9
Bs[d] 0O 01 2 3 45 6 7 8
Bs|d] 000 2 4 6 8 10 12 14
By[d] 0O 000 3 6 9 12 15 18
Bsd] 0O 00O 0O 4 8 12 16 20
Bs|d] 0O 00O O O 5 10 15 20
By[d] 0O 0O00OO O 0O 6 12 18
Bg|d] 0O 000OOO O 0 7 14
By|d] 0O 000OOO O 0 o0 8

TABLE 2. Calculations for R 5.

In [9] Gupta and Levin prove the following result

Theorem 5.1 (Gupta and Levin, 1983). Given m,l > 2 and an arbitrary algebra
A, we have that
Mm(A) : MI(A) C Merl,Q(A).

This bound can be improved for a specific type of pairs (m, ). Etingof, Kim and
Ma [6] called a pair of natural numbers (m, 1) a null pair if for every algebra A we
have that M, (A)- M;(A) C My41-1(A). They conjectured that a pair (m,1) is null
if and only if either m or I is odd. Bapat and Jordan [1] confirmed this conjecture
and established the following result

Theorem 5.2 (Bapat and Jordan). A pair (m,!l) is a null pair if and only if m or
l is an odd number.

Here we describe the main results which establish a connection with the free
algebra.

Theorem 5.3. Consider the algebra Ry, ;. The space N;(Ry, 1) is isomorphic to
N;(A) fori < m+1—2. If the tuple (m,1) is a null one, then N;(R,, ;) is isomorphic
to N;(A) fori <m+1—1.

Proof. From Theorem 5.1 we get M,,,(A) - M;(A) C My,11—2(A). Theorem 5.2 gives
us My, (A)-M;(A) C Mp4i-1(A) for the null pair (m, ). Thus, consider the filtration

(1) Mi(A) DD Mpyyi—r—1 D Mppi—r DO My, (A) - M;(A)
where 7 is two in the general case and one in the case of (m,!) being null.

For convenience, let us denote with I, ;(A) = I, the ideal M,,(A) - M;(A).
Now, let us consider the elements N;. On the one hand, by definition

Ni(A) = M;(A)/Mi1(A).
On the other hand, for the PI-algebra R,,; we have that
Ni(Rm1) = Mi(Rp 1) /Mig1(Ring) = Mi(A/ L) [ Mig1 (A I ),

which is equivalent to N;(Rpm1) = (Mi(A) + L) / (Mig1(A) + Iny) - I 1y is a
subspace of the two-sided ideal M;(A) for some j, then M;(A) + I,,; = M;(A).
From Equation (1) we have that I,,,; C M;(A) for j < m+1—r. Hence, we obtain

isomorphic elements M; and consecutively isomorphic quotients; so N; = N; (R, 1)
for i < m 41— r. The last argument completes the proof. |
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There are some specific cases when we can strengthen the known results for the
properties of null pairs. For instance (2,2) is not a null pair, however, the following
statement holds

Proposition 5.4. The following inclusions are satisfied
(MQ(AQ))2 C MS(AQ) and (MQ(AS))Q - M3(A3)

Proof. Let us consider the free associative algebra A, with n < 3. Note that the
ideal M>(A,,) is generated as a two-sided ideal by the elements of the form [z;, z;]
(see [6]). Therefore, all the elements of the form
alz;, xj]blxk, zi]c
generate our space Ms(A,,), where a, b and ¢ are arbitrary elements in our algebra.
Furthermore, as a two sided ideal, we span the space M»(A,,) simply by the elements
in the generating set G = {[z;, z;]r[zk, x;]|r € A, }. Let us take an element
g = [zs, zj]rler, =]
in the generating set G. Due to the fact that n is less than four, we have that two
of the indices of the variables are equal. If ¢ = j or k = [, then g equals zero and it
is in the ideal M3(A,). If not, without loss of generality, we consider ¢ = k. Recall
the identity
(2) [ba Cd] + C[d> b] = [bv C]d
for arbitrary elements a, b, ¢ and d in A,. We apply Equation (2) for the first two
factors in the element g to get
g = [zi, xjr][z, 1] + xjr, z][zk, ).
Now, we have that —g = [z;7, x;|[zk, 2] — 22[r, ;] [Tk, 21] and we apply the identity
[a, b][b, c] = 3[ab, b, c] — 3[a, b, c]b + [ac, b,b] — alc, b, b] — [a, b, b]c
to obtain —g as a linear combination of elements in M3(A,). The fact that g is in
the generating set G for Ma(A,,) completes the proof. |

We extend the same idea for more classes of PI-algebras. Using similar arguments
as in Theorem 5.3 we derive the following result.

Theorem 5.5. The space N;(Sp,,1) is isomorphic to N;(A) fori < m+1—r, where
T is two in the general case and one in the case of (m,l) being a null pair.

Proof. Let us take an element m of the ideal A[L,,, L;]. Suppose m = a[B, C] where
a€ A, Be L, andC € L;. We expand the commutator to get m = a-B-C'—a-C-B.
From Theorem 5.1 we have that a- B-C and a - C - B are in the ideal M,,1;_2.
Furthermore, Theorem 5.2 states that if (m,!) is a null pair, a- B-C and a-C - B
are in M, +;—1. This means that m € M,,;—,, where r is two in the general case
and one if the pair (m,!) is a null one. Now, similarly to the proof of Theorem 5.3,
we consider

Ni(Sm,1) = Mi(Sm1)/Mis1(Sm,) = (Mi(A) + AL, L1]) /| (Mi11(A) + A[L, Li]),
and from the above considerations we obtain

(Mi(A) + AL, La]) /| (Mi1(A) + A[Lm, Li]) = Mi(A)/M;11(A) = Ni(A).
The proof is completed. |
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5.1. Isomorphism between the B-series and the N-series. One of the most
important observations we made for the Pl-algebras under consideration is that
B; = N; for i large enough. Below we provide a proof of this statement. First, we
state a result by Bapat and Jordan [1].

Theorem 5.6 (Bapat and Jordan, 2010). For ! odd and k arbitrary we have that
[Mi(A), Li(A)] € Lr41(A).
We apply this theorem to prove the next lemma.

Lemma 5.7. The following holds

Li(A) + M;(A) - My(A) = M;(A) + M;(A) - Mz(A),
for all even positive integers i such that 1 > j + 1.
Proof. The inclusion L;(A) C M;(A) implies that

Li(A) + M;(A) - Ma(A) C My(A) + M;(A) - My(A).
Since we know that the two-sided ideal M;(A) is actually a one-sided ideal, we have
M;(A) = [A,L;—1(A)] - A. Let [s,C]t be an arbitrary element of this ideal, where
s,t € Aand C € L;_1(A). We apply the identity [b, cd] +c[d, b] = [b, c|d with b = s,
¢ = C and d =t and obtain

[s,C)t = [s,Ct] + Ct, s].

Suppose ¢ > j+ 1. Since C € M;_1(A), we have that C[t, s] € M;(A) - Ma(A).
Moreover, [s, Ct] is in [Ly, M;_1]. Suppose i is even. From Theorem 5.6 we get
that [s, Ct] € L;. Therefore,

[s,Ct] + C[t, s] + M;(A) - Ma(A) € L;(A) + M;(A) - Ma(A),
which implies
Li(A) + M;(A) - Ma(A) D M;(A) + M;(A) - Ma(A).
This completes the proof.

We use this result to prove a stronger statement.

Theorem 5.8. The following equality is satisfied

Li(A) + M;(A) - Ma(A) = M;(A) + M;(A) - Ma(A)
for all positive integers i > t, where t = 2 f%]
Proof. We have that L;(A) + M;(A) - Ma(A) C M;(A) + M;(A) - Mz(A). We use
induction on the index i. Note that ¢ is the smallest even number such that ¢ > j+1.
Hence, from Lemma 5.7 we have that the theorem is true for ¢ = ¢. This is our base
case.

Now, suppose that the statement holds for every j' such that j' < ¢ and ¢ > t.
Take m = [b, Cla € M;;11(A), where C' is a commutator in L;. Therefore,

[b, Cla = [b,Ca] — Cb, a].
We have that C[b,a] € M;(A) - M3(A). Consider [b, Cal, where Ca is in M;(A).
We use the induction hypothesis and present Ca as d + m’, where d € L; and
m’ € M;(A) - My(A). Now, using the bilinearity of the Lie brackets we get

[b, Ca] = [b,d] + [b,m].
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Furthermore, [b,d] € L;i+1(A) and [b,m'] € M;(A) - Mz(A). Hence, the statement
is true for i + 1 as well. This completes the induction and the proof is finished. W

We conclude the section with the Isomorphism Property statement which is the
main result.

Theorem 5.9 (Isomorphism Property). The following holds
Bi(Rj2) = Ni(R;j2)
for all positive integers i > t, where t = 2 [%]
Proof. By definition
Bi(Rj2) = Li(Rj2)/Lit1(Rj2)
= (Li(A) + M;(A) - M3(A))/(Li1(A) + M;(A) - Ma(A)).
and
Ni(Rjz2) = Mi(R;2)/Mit1(R;2)
= (Mi(A) + M;(A) - Ma(A))/(Miy1(A) + M;(A) - Ma(A)).
From Theorem 5.8 we have that L;(A)+M,(A)-My(A) = M;(A)+M,;(A)-Mz(A).
We use this to complete the proof. |
6. COMPLETE DESCRIPTION OF N, (Rsz2).

In this section we consider the N-series of the free metabelian associative algebra.
First we start with a result about the structure of Ry ».

We use techniques similar to those used by Drensky who describes in his book
[5] a basis over a field of characteristic zero for R o.

Theorem 6.1 (Drensky, 1999). The elements in the set
E:={a{" a0z, ..., 2]}
form a basis for Rao, where a; > 0 for 1 < j < mn, i1 > 49, ig < -+ < 4, and

r=1,2,3,...

Definition 6.2. For an element m of the form m = a - C - b, where a and b are
monomials in x1,a,...,2, and C is a commutator, let [(m) denote the length of
the commutator C. We treat monomials in n variables as commutators of length
one.

For instance, [(x3x2) = 1; [(x1[z1, z2]23w2) = 2; [(21[21, T2, 23]) = 3. We present
properties of the identities in the free metabelian associative algebra:
‘Ty[aﬂ b] - yz[a, b] = [Iv y] [av b} =0.

This leads us to zy[a, b] = yz[a,b] and it means that we can always order elements
which multiply the commutator to the left. Next, we consider the identity

Cx =zC+[C,x].

If C is a commutator we get that we can transform every right multiplication as a
sum of a left multiplication and a longer commutator. We note that

[a, bc] = bla, c] + [a, ble,
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which helps us reduce the degrees of certain monomials. Moreover, in the free
metabelian associative algebra

0= [av b] [Ca d] - [Cv d} [aa b] = [[(l, b]v [Cv d“ = [av ba &) d] - [a» bv dv C]'

From this identity we get [a,b,75(1),...,7o(m)] = [a,b,71,..., 7], where 0 € S, is
a permutation in the symmetric group S,. This allows us to freely permute the
elements after the first two. The following lemma is important for the proofs of the
arguments in this section.

Lemma 6.3. Every element m of the form
m=b[[ziy,..., 2],

can be presented as a linear combination of elements e; of the basis E with length
I(e;) > l(m), where i1 > iy and iz < -+ < .

Proof. Due to the bilinearity of the Lie bracket and the distributive property of
the polynomials, without loss of generality, we set b and ¢ to be monomials. Now,
suppose ¢ = ;! ---z{™. We prove the statement via induction on the total degree
ay+ -+ an,.

For deg c = 1 we have that ¢ = z; is a variable in the set of n variables which gen-
erate the free associative algebra. Therefore, we have that m = bz,,, ..., x;,, x;].
Now, we use the permutation properties of these brackets and the Jacobi identity
combined with the anticommutative law to present m of the form

m= bl[‘rjla cee 7xj7‘+1}7

where j; > js and jy < -+ < j.41. The base of the induction is proven.
Suppose that we have proven the statement for all monomials ¢’ with degc’ <

and 7 > 1. Consider the monomial ¢ = m;lll . x;’: with degc =i+ 1. We have that

ay

m = bl[zi,, ... 2], 2f) 2]
=b-ajl - -x?:ﬁl[[xil, oo @iy x|+ bl @ ] 2 x?:’l]xjh.

With proper permutations of the elements in the commutator we can present the
first element in the sum of the desired form. Hence,

I(b- x;lll .- -xﬁf*l[[xil, o]z, ]) = Um).

Now, for the second summand we have

b[[xil, . 7.%‘1‘7,], Z'Jall s $;2L71]$jh =b- Ly, Hmh Yooy xir]? lel o x?,}:il]
+ b[[ziy, - - ,xir],x‘;ll . ~z?:’_1,xjh].

For the first element in the sum we use the induction hypothesis because

ah—1

ay . K — 9
deg ! -, i.

For the second summand we permute the last two elements in the commutator and
use the induction hypothesis again. Thus, we prove the statement for degc =17+ 1
as well, which completes our induction and proof respectively. |

The next result is crucial for the proof of the main theorem (Theorem 6.5) in
this paper.
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Lemma 6.4. The following holds
M;(Rz2) C span(xy" - - " (@i, - %5, ])
for everyr >4 and a; >0 for j =1,...,n.

Proof. We use induction on the index i. Note that M;(R22) = Reo. Forr >1
we have that span(z{* - - - 2% [x;,,...,2;.]) = Ra2 due to Theorem 6.1. Hence, the
statement is true for ¢ = 1. We take an element m € Ms(R22) and present it as a
unique linear combination of elements of the basis E in the following manner

m = E Qaj€j,
J

where a; € k. We know that as a two-sided ideal Ms(Rs 2) is generated by {[xs, x¢]}
(see [6]). Hence, m is of the form } _, a - [xs,¢] - b, where a and b are monomials.
Moreover, the sum of the element e; with o; # 0 and I(e;) > 2 is also of the
form 3, a- [zs, 2] - b because these elements are in Mz(Rz2). If we suppose that
there are elements e; with I(e;) = 1 we get that their sum should be of the form
> st @ [s, 4] - b, which is a contradiction. Therefore, the statement is true for
© = 2 as well. This case is the base case for the induction.

Suppose that we have proven the proposition for all j, such that j <iand ¢ > 2.
Let us take m € M;;11(R22). Without loss of generality, we assume this element
is of the form m = a[b, C], where C is a commutator with {(C') = i and a,b being
monomials. We multiply by negative one and consider m as a'[C,b]. We have
that C' € M;(R22) and we use the induction hypothesis to present it as a linear
combination of elements of the basis with length greater than or equal to i. Thus

!
m=a E a;C;,b] ,
J

where {a;} are monomials in the variables z1,...,z, and {C;} are the desired
commutators. Once again, due to bilinearity, we consider only the case

m=a'[a"C",b] = d'a"[C’,b] + d'[a”, b]C".

The second summand is zero in the free metabelian associative algebra R 2 because
[(C") > 2. For the first summand we have that [(a’a”[C’,b]) > i+1. We use Lemma
6.3 for a’a’[C’, ] to complete the induction step and thus the proof of the lemma.

|

We continue with the most important result in this paper.

Theorem 6.5 (The Structure Theorem). For a fized r > 1 a basis for the elements
NT(R272) 18

{x1* - apm @y, - 2]}

where a; > 0 for 1 <j <n, i1 > iy and iz < --- <4, in the commutators of length
T.

Proof. Consider the filtration of the elements M;:
Rp2 D Ma(Rz2) D M3(Rap2) - .
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We introduce the subspaces @), where Q; := span(x]* --- 2% [z;,,...,z;,] | h > j),
i.e. the span of the basis elements with commutator length greater than or equal
to j. Consider the filtration

Ros D Q2(Ra2) D Q3(Raz)--- .

On the one hand, Q;(R2,2) C M;(Rz2,2) because every commutator of length greater
than or equal to i is in M;(Rz2). On the other hand, from Lemma 6.4 we get that
M;(R2,2) C Qi(Rz22). Thus Q;(Rz2,2) = M;(Rz,2) and we have that the filtration of
the elements @; is compatible with the one of the elements M;. The definition of
N;(Rg,2) implies

Ni(R2,2) = M;(R22)/Miy1(R22) = Qi(R22)/Qiv1(Ra2).

The statement of the theorem follows from the fact that a basis for @Q;(Rz2) is
{x{* - alnwy, ..., 2}, forig >dg, i < -~ <dpandr=4j+1,7+2,... N

The elements N, exhibit a natural grading of the form

Ny (Ra2) = @D Ny (Ra2)]d],
d>0
where the subspace N,.(R22)[d] is spanned by all of the elements e of the basis E
with dege = d.
This way we may try to find the structure of the elements N, in terms of finite
dimensions. The following combinatorial results confirm the conjectures of the
patterns for the free metabelian associative algebra.

Corollary 6.6. For the behavior of the elements N,(Rz2) we have that
dim(Nr(RQ,Q)[d]) ~ Cr7ndn_1,
where ¢, 15 a constant as d tends to infinity.

Proof. We count the number of elements of degree d of the form

ay Q,
L1 '“x'mn[‘r’h?"'axir]»

where 7 > 1, a; > 0 for 1 < j <mn, 41 >4 and i3 < --- <4, in the commutators of
fixed length r. For this purpose, we consider a vector space with proper grading.
It generates a Hilbert series which leads to the desired result. Let V' be the vector
space over a field of characteristic zero with basis all the commutators [z;,, ..., z;, ],
where 47 > i and i3 < --- < 4, for all » = 1,2,... The space V has a natural
multigrading if we take into account the degree of each variable in the commutators:
V =@, V-t The Hilbert series of V is

n

Hilb(V, 21,...,2,) = <Zn:zi_1> H ) 1
i=1 —

j=1

Therefore, for normal grading we get Hilb(V, z) = (nz — 1)/(1 — 2)™ and since the
degree of the commutator is 7,
L nz—1 d—r+n-1

3 dim(N,(Re2)[d]) = | [¢"] ——— )

0 R e [ G

nz—1
(I—2)"
series (nz—1)/(1—2)". Now, we estimate Equation (3) asymptotically to complete
the proof. |

where ([zr} ) is the coeflicient in front of the n-th power of the formal power
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Note that this result is compatible with the conjectures for the cases of two and
three variables. One just has to expand the formal power series (nz—1)/((1—2)").

7. UNIVERSAL HYPOTHESIS ABOUT THE BEHAVIOR OF THE LOWER CENTRAL
SERIES QUOTIENTS OF PI-ALGEBRAS

In [7] Feigin and Shoikhet consider the action of W,, on the lower central series
quotients of the algebra A,,. Moreover, these quotients are W,,-modules which are
finite in length. We can describe the structure of the elements N, (R; ;) in terms of
irreducible representations appearing in the Jordan-Ho6lder decomposition of N;..

The algebras R; ; and S; ; are interesting because the structure of their commu-
tator ideals allows the action of W, to descend to an action on the lower central
series quotients for R;; and S;; as well. From basic facts of the representation
theory of W,, we have that for a fixed r, the dimensions of the quotient components
B.[d] and N,[d] are polynomials in d for d large enough. This, however, is not
always true for small values of d.

From Theorem 6.5 we get that

NT(R2,2) = -F(r—l,l,O,...,O)

as a W,-module, where F(,_1 1, .. 0) is a single irreducible representation of W,
of rank r. This confirms the observations in Table 1 and Table 2. As one can see,
the sequences in the rows behave like arithmetic progressions. We determine the
irreducible module by considering the degrees of the basis elements described in
Theorem 6.5. In Appendix B we present tables for several other algebras. It would
be interesting to prove the following conjecture, about the universal behavior of the
elements N, (R, ).

Conjecture 7.1 (Universal Behavior). Given r > m+1, the Jordan-Hélder series
for Ny (Ry,.1) consists only of irreducible W,,-modules of rank r.

8. ADDITIONAL RESULTS. REPRESENTATION THEORY OF GL,(K)

In this section we present additional results on the structure of the N-series of
the algebras R; ;. First, we need to introduce some new terminology of polynomial
identities.

8.1. Some more PI-theory. Let us consider {f;(z1,...,2,) € Ay} — a set of
polynomials in the free associative algebra A,,. We denote with a wvariety defined
(determined) by the system of polynomial identities {f; | i € I} the class © of all
associative algebras satisfying all of the identities f; = 0,7 € I. We call a variety
M a subvariety if M C D.

Definition 8.1. We denote with T'(D) the set of all identities satisfied by the
variety ® and call it the T-ideal of ©.

Hence, we can see that the elements M;(A) (¢ > 2) are T-ideals of the corre-
sponding classes (varieties) 9; of all algebras satisfying the identity [a1,...,a;] = 0.
Furthermore, their products M;(A) - M;(A) are also T-ideals of the corresponding
varieties 9, ; satisfying [a1,...,a;][b1,...,b;] = 0. Thus we can translate results
on T-ideals in the language of the M-ideals. This will be particularly useful, since
the algebras we consider, R; ;, have the structure of the free associative algebra
factored by a specific T-ideal.
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Definition 8.2. For the generating set Y the algebra Fy (D) in the variety D is
called a relatively free algebra of © (or a ®-free algebra) if Fy (D) is free in the
class © (and is freely generated by Y).

Such algebras exist and are comprehensively studied in [5]. Two relatively free
algebras of the same rank are isomorphic. Thus, if the rank of Fy (D) is n, we may
simply write F,, (D). It is known that the free metabelian associative algebra Ry 5 is
the algebra F, (M3 o) — the relatively free algebra of the variety 9o o of algebras
satisfying [a, b][c,d] = 0. Moreover, the free algebras F,,(9; ;) are equivalent to
R; ; in our language.

Definition 8.3. A polynomial f in the free associative algebra A,, is called proper
if it is a linear combination of products of commutators. We denote with P, (A)
the set of all proper polynomials in A.

Let us take a PI-algebra R; ;. In a similar way, we define P, (R; ;) to be the image
in R; ; of the vector subspace P,(A). When we know the number of variables, we
may simply write P(R; ;) = P,(R; ;) — the set of all proper polynomials in the
Pl-algebra R; ;.

We continue with an important theorem which we will use throughout the paper.
The original statement is in the language of relatively free algebras but we translate
it in the language of the algebras R; ;.

Theorem 8.4 (Drensky, 1999). For the Pl-algebra R; ; we have that
Ri,j = ,C[xl, .. ,J,'n] [ Pn(Rl’J)

For more information on relatively free algebras and T-ideals see [5].

8.2. Representation theory of the general linear group. In this subsection
we consider basic results on the representation theory of the general linear group
GL,(K), acting on A,. For the purposes of this paper we shall describe GL,’s
irreducible modules in terms of Schur functions and, thus, Young diagrams only.
For more information on the representation theory of finite and nonfinite groups see
[15]. The representation theory of GL,, is connected with the representation theory
of the symmetric group S,. The action of GL,,, on the other hand, is connected
with the action of W,,. Therefore, it would be interesting to describe the results in
this paper in the language of representations of S,, and W,, too. For convenience,
however, here we shall concentrate on G L,-representations.
Consider 7 — a finite dimensional representation of the group GL,(K), i.e.

7w :GL,(K) — GL.(K)
for a given r.

Definition 8.5. The representation 7 is polynomial if the entries (m(g)),; of the
corresponding 7 X 7 matrix m(g) are polynomials of the entries ay; of g, given
g € GL,,. The polynomial representation 7 is called homogeneous of degree d if its
entries are of degree d.

Similarly, we say that the GL,,(K)-modules are correspondingly polynomial mod-
ules and homogeneous polynomial modules. We want to see the action of GL,, on
the free associative algebra A,. More specifically, we can extend the action of
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GL, on the vectors space V,,, with generators x1,...,x,, diagonally on the free
associative algebra A, by

9@, - xr,) = g(@r,) - g(2r,,),

where g € GL,, xy, -+ -z, € A,. This way, A,, becomes a left GL,-module which
is a direct sum of the submodules A, for r = 0,1,2,... of the grading of A,,.

Theorem 8.6. All polynomial representations of GL,, are direct sums of irreducible
homogeneous polynomial subrepresentations. Moreover, all irreducible homogeneous
polynomial G L, -modules of degree d are isomorphic to a submodule of A,

The irreducible homogeneous polynomial G L, -representations are known.

Definition 8.7. We denote with s = s5(Xy4) the Schur function which is a quotent
of Vandermonde type determinants

sa(Xa) = VI‘(/),\(; (;’(j;d)a
where A = (Ay,...,\g) is a partition, § = (d —1,...,0) and
ot ah? i
Vi xg =|
xh? xé‘d zh?
where p = (1, ..., puq) and Xy is a set of variables.

The following theorem is fundamental to our representation theory considera-
tions in this paper. It can be found in [15] and [5].

Theorem 8.8. The pairwise nonisomorphic irreducible homogeneous polynomial

G L,,-representations of degree d > 0 are in 1-1 correspondence with partitions A\ =
(A,.. ) of d.

Definition 8.9. Let Y;,(\) be the irreducible GL,-module related to A.

Due to the correspondence with partitions, we have that the dimension of Y,, ()
for a fixed A is equal to the number of semi-standard Young A-tableaux of content
A= (A1,..., ). For more information on Young diagrams and Young tableaux
see [14].

8.3. Additional results. Now we are ready to translate Theorem 6.5 (The Struc-
ture Theorem for the free metabelian associative algebra) in the language of repre-
sentation theory of GL,. The action of the general linear group on A,, translates
on R; ; C A, and thus on the quotients N, (R; ;).

Theorem 8.10. We have the following module structure
Ny(Ro) 2 | Y Ya(h) | ® Yal(r—1,1),
j=0

where Y, (X\) is the irreducible GL,,-module related to the partition \.
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Proof. First of all, from Theorem 6.5 we have that a basis for N, (R 2) is
{w?l o '372"’ [mi17 s 7$i'r']}
for a fixed r, where i1 > ip < --- < 4,. This means that

NT(R272) = K[Xn} ® Pr(LT)<R2,2)7

where P,ST)(RQQ) is the vector space of proper elements in Ry o of degree r (with
basis {[xi,,...,x;.|} for i4 > ia < -+ < 4,.). Now, since the Hilbert series of all
homogeneous polynomials of a fixed degree j is the complete symmetric function

H(tl,...,tn) :Zti"l ...t%m where a1 + - - + =3,

we have that this series is equal to the Schur function s;)(¢1,--- ,,) which gives
us the isomorphism

o0
KX =) Ya(i)-
j=0
Consider the mapping
[177' R 7] ] — i2 23‘24“2T‘
b1 ? by 7171 )
where i; > ip < .-+ < 4,.. This mapping is a bijection between the elements of

degree r in P,(Rg22) and the semi-standard Young tableaux. Thus the Hilbert

series of P{" (R2,2) is equal to s(._11)(t1,...tn) and this consequently leads us to
the isomorphism

P (Ry ) 2 Yy (r — 1,1).
The last argument completes the proof. |

The GL,-structure, we presented, would give us the same dimensions we ob-
tained for the gradings of the N-elements in Corollary 6.6. However, the structure
is of the form of a tensor product of irreducible modules. It would be interesting
to present it of the form of a direct sum of Y,,-modules. This is possible via the
Littlewood-Richardson rule ([15]). However, here the modules are simpler, so we
shall use the Young rule.

Theorem 8.11 (Young Rule). We have that
Yn(]) ® Yn(>\17 ceey )\n) = Yn()\l +p17 ey )‘n +pn)7

where the summation is over all p;, i = 0,1,...,n, such that \; + p; < \;_1 for
1=0,1,2,...,n. Moreover,

Yn(lq) X Yn()\h ey /\n) = Yn(Al + Elyenny )\n + €n),
where the summation is over all ¢; = 0,1, such thatei+---+¢e, =q and \; +¢&; <
Aic1+ei—q fori=0,1,2,...,n.
We note that (1) stands for the partition (1,...,1) of ¢ with exactly ¢ 1s. Tt is
sufficient to consider Y, (j) ® Y,,(r — 1,1). The Young rule gives us

min{j,r—2}
V() @Yu(r—1,1)= Y Yo(r+j-k—-1k+1)
k=0
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Therefore, we obtain the structure

oo min{j,r—2}

Ne(Rp,2) 2> > Yu(r+j—k—1k+1)
j=0 k=0

SREER[EEETEEENETETEEE

TABLE 3. Diagrammatic version of the product of two irreducible
modules via the Young rule.

We can also calculate the dimensions of these modules using the Weyl character
formula (see [15]).

Theorem 8.12 (Weyl character formula). We have that the representation Y, (X)
is zero if and only if n < p for p — number of parts in the partition A. If n > p we
have

dmY,(\) =[] Mz AHi—i
1<i<j<n J =t

For instance, for the lowest degree part (r — 1,1) we have the dimension
(r—141-1)/1=r—-1.

This is compatible with our MAGMA calculations.

So far in this paper we presented a method for obtaining the structure of the
N-series of the free metabelian associative Pl-algebra Ry 2. In the following lines
we will try to generalize this method for two variables x1, x5. First we extend some
of the previous results.

Theorem 8.13. For the ideals M;(As2) and M2(As) we have that
M;(Az) - M(Az) € Mj11(Az)
for any j greater than one.

Proof. First of all, note that Ms(Asg) is generated by [x1,z2] as a two-sided ideal.
Hence, M;(Asz) - M3(A2) as a two-sided ideal is generated by all elements of the
form

{[07 J'_J]T[Il, 582]},
where C' is a commutator of length j — 1 (meaning that I[(C) = j — 1), r is a
monomial in Ag, and Z € {x1,22}. Without loss of generality, we consider only the
case T = x1. Thus we are interested in
[C, zq]r[x1, z2).
Having in mind that
—lx1, Clr[z1, 2] = Clay, r][z1, 22] — [21, Or][21, 22],

[z1,7][x1,22] € M3(A2) (from Proposition 5.4), C € M;_1(A2) and M;_q1(As) -
Ms5(As) € Mj11(As2) (since 3 is odd) we get that Clzy, 7]|[z1, z2] is in Mj411(A2), as
intended.
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Due to the above considerations, we need to consider only [Cr, z1][x1, z2], but
here we may apply identity

[a, b][b, c] = 3[ab, b, c] — 3[a, b, c]b + [ac, b,b] — alc, b,b] — [a, b, b]c
to obtain
3[Cray, x1, 23] — 3[Cr,x1, x2]x1 + [Cras, x1,21] — Crlze, 21, 21] — [Cr, 21, 1] 2.
Moreover, take the elements 3[Cr, z1, xs|x1, [Cras, x1,21], and [Cr, z1,21]x2. The
commutators Cr and Crzy both belong M;_1(As). Since z; is in Li(Asz), from
Theorem 5.6 we get that [Cr,z1], [Crze,z1] and [Cr,z] are in L;(A2). This
automatically means that 3[Cr, x1,x2]x1, [Cras, x1,x1], and [Cr,z1,z1]ze) are in

M;11. Now, we consider only Crlzs,x1,21] € M;_1(A2) - M3(Az) € M;11(As).
The proof is completed.

We additionally modify Lemma 6.3.
Lemma 8.14. Fvery element m of the form
m = bl[xy, ..., 2],
can be presented as a linear combination of elements

/
b [ij. . ,.’EjTJrU],
where v is greater than zero.

Proof. Due to the bilinearity of the Lie bracket and the distributive property of
the polynomials, without loss of generality, we set b and ¢ to be monomials. Now,
suppose ¢ = x?ll --x;™. We prove the statement via induction on the total degree
ay+ -+ an,.

For deg c = 1 we have that ¢ = z; is a variable in the set of n variables which gen-
erate the free associative algebra. Therefore, we have that m = bz,,, ..., x;,, x;].
The base of the induction is proven.

Suppose that we have proven the statement for all monomials ¢’ with degc’ <

and 7 > 1. Consider the monomial ¢ = z§! ---x7" with degc =i+ 1. We have that

m=bl[zs,, ... @], 2]
= b2 ) ) bl ]2 e,

With proper permutations of the elements in the commutator we can present the
first element in the sum of the desired form. Hence,

l(b . x;lll s x?}?il[[xiu cee uxir]7xjh,]) = l(m)

Now, for the second summand we have

bllxiyy -y, ], x?ll . -x;:’l]xjh =b-z; [T, ®i]s m;f e x?:q]
+ b[[xi1’ cee 7x7;7‘:|’x;/11 e :E?:_l,l'jh].

For the first element in the sum we use the induction hypothesis because

a aAp—1 __ .
degay ---x;'" =i
For the second summand we permute the last two elements in the commutator and
use the induction hypothesis again. Thus, we prove the statement for degc =17+ 1

as well, which completes our induction and proof respectively. |
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We continue with the modification of Lemma 6.4. Note that we work in two
variables.

Lemma 8.15. When working in two variables, for the ideal M,(R2 3) we have that
M, (Ra3) = Klz1, 22| ® span{[zi,, ..., @4, ], [Thy, - o Tk, [0, 22}
where iy, ...,1; are either 1 or 2, j >, ki,...,k; are either 1 or 2, and j' > r—1.
Proof. First, note that
ablc,d, e] — bale, d, €] = [a,b][c,d, e] = 0.
This means that our ideal is a left K[z1, 22]-module.

We proceed by induction on r. Since M;(Rz3) = Ra 3, for 7 = 1 the statement
is satisfied. Furthermore, My(R23) = span{a[z1,z2]b} which also satisfies the
conditions. Now, as a two sided ideal, M3(Rz 3) is generated by (see [5])

[mil » Lig 'Tiz]v [xh ) miz][xiaa mi4] + [l'iz, wiz} [xh ) wi4]7

which again correspond to the statement.

Now, suppose we have proven things for all 3 < j < i and consider r = i + 1.
We take m € M;11(Ra3). Without loss of generality, m = a[C,b] where a and b
are monomials in Ay and C' € L;(As) C M;(As). Thus C € M;(As) and we use the
induction hypothesis to present m as a sum of two independent sums

m/ - a/ [Z b/[‘rhw . .,‘Tl'j],C/:| )

m’ =a" [Zb"[xkl,...,xki_l][ml,xg],c"] ,

where j > 4, all of the indices are either 1 or 2, o’,a” € K[z, x2], and V', 0", ¢/, ¢ €
As are monomials.
Due to the bilinearity, for m’ we consider only

and

m' =d [V[zi,...,x;,],c]
= a,/b/[ﬂiil,. . ,Iij,C,] + a'[b',c’][mil,. - ,jSj].

For the first summand we use Lemma 8.14. The second element in the sum is zero,
because I([z;,,...,z4]) > 3.
Due to the bilinearity, for m” we consider only

m" =a" [V [z, ... ¢k, )21, 22, ¢
="V [[why, - wp[on, @), )+ d” B, ) [k, @k, [T, 2]
="V [xpy, .. wp ] (21,20, "+ d"V (2, 2k, ] 2, @)
We see that a”b"[xg,,..., 2k _,][T1,22,¢”"] = 0 since the first commutator is

longer than 2. The second summand satisfies the statement by Lemma 8.14 for the
first commutator. Now we use the left K[x1, z5]-action to complete the induction
and thus the proof. |

We would like to find the G L,-module structure of the algebra Ry 3. Theorem
8.4 gives us that
R273 = ]C[Z‘l, - ,xn] ® Pn(R273).
Thus, it is sufficient to consider the vector space of proper polynomials P, (Rs 3).
Before we calculate that, note that it is easy to see that P,(A/M2(A)) = K since
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A/M>5(A) is the abelianization of A,,. The algebra A/M3(A) is the so called Grass-
man algebra and from [5] we have that

P, (A/Ms(A Z Y, (1%F).

We know that Ma(A) - M3(A) is a product of two T-ideals. Formanek [8] presented
the Hilbert series of quotients of the form A/(U - V) in terms of the Hilbert series
of the quotient A/U and A/V, where U and V are two T-ideals. Here we translate
this result in the language of GL,-representations.

Theorem 8.16 (Formanek, 1985). For P, (A/(T-V)), the space of proper polyno-
mials in A/(T - V'), we have

P,(A/(U-V)) = P,(A/U)BP,(A/V)B(Y,(1)-1)QP,(A/U)RP,(A)V)RK[z1, 2],
where U and V' are T-ideals.
Based on Lemmma 8.15 and Theorem 8.16 we state the following conjecture

Conjecture 8.17. For the algebra Rs 3(As) we have that

N, (Ry3(As)) <ZY2> (Ya(r — 1,1) @ Ya(r — 2,2)),

for r greater than four.

The final step of the proof would be to modify the Structure Theorem for the case
Ry 3 and “adjust” the indices of the irreducible modules. Our MAGMA calculations
also agree with the conjecture.

9. CONCLUSION

We studied the lower central series of algebras with polynomial identities. Using
approaches from PI theory, linear algebra, and representation theory, we considered
some general properties for the algebras R; ;. We gave a comprehensive classifica-
tion of the structure of the /N-series for the free metabelian associative algebra Rs 5.
Furthermore, we formulated a conjecture about the general behavior of the lower
central series of a class of PI-Algebras. Studying the representation theory of GL,,,
Sn, and W,, we may generalize the method, which we present in this paper, for
more Pl-algebras of the form R; ;.
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APPENDIX A. BASIC DEFINITIONS

Definition A.1. An algebra (or K-algebra) is a vector space A over a field IC,
equipped with a binary operation * : (A, A) — A, which we call multiplication,
such that for every a,b,c € A and o € K we have:
(a+b)xc=axc+bxc,
ax(b+c)=axb+axc,
alaxb) = (ca) *b=ax* (ab).
Definition A.2. A k-algebra g with multiplication [,]: (g,9) — g is a Lie algebra
if the following holds:
[a,a] =0 (the anticommutative law),
([a,b],c] + [[b, c], a] + [[c, a], b] = 0 (Jacobi identity).

We also recursively define [rq,...,7,] = [[r1,...,7Tn—1], ] for elements in g.
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Definition A.3. A vector space A is graded, if it is a direct sum of the following

type
A= @
i>0
where the subspaces A are homogeneous components of degree i of A.
In a similar way we consider multigrading of A = @iV(“"“’i")7 where we have

homogeneous components of a multiindex degree. An algebra A with the property
AW AU ¢ AU+ s a graded algebra.

Definition A.4. For two vector spaces V and W with corresponding bases
{v; | i € I} and {w; | j € J} we define their tensor product V @ W to be the vector
space with basis

{viow;|iel,je J}.

The multiplication of linear combinations is defined as

(ZO”UZ)@ Doy | =20 (v @ wy),

iel jeJ iel jeJ
where a4, 8; € K.

Definition A.5. For dim A* < oo, where i € Ny, we denote with the Hilbert-
Poincaré series of the algebra A the formal power series

H(A,z) =Hilb(A,2) =) dim AW".
i>0
For multigrading we take formal power series in more variables. Thus

H(A z1,...,2,) =Hilb(A, z1,...,2,) = Z dirnA(il“"’i")zi1 coeglin,
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APPENDIX B. COLLECTED DATA viA MAGMA

Element in the series: Degrees of grading;:
B;ld 01 2 3 45 6 7 8 9
Bs[d] 001 23 45 6 7 8
Bs|d] 0 00 2 4 6 8 10 12 14
By[d] 0000 3 6 9 12 15 18
Bs|d] 0 000 0 4 8 12 16 20
Bs|d] 0 00O 0 O0 5 10 15 20
Br[d] 0O 00O O0OO0OTO0O 6 12 18
Bg[d] 0000 O0OO0OO0O O 7 14
By[d] 0000 O0O0OO0O O O 8

TABLE 4. Calculations for As/(Ma(Asz) - Ma(As)).

Element in the series: Degrees of grading:
N;[d] 012 3 4 5 6
No[d] 0 0 3 9 18 30 45
N3ld] 0 0 0 8 24 48 80
Ny[d] 0 00 0 15 45 90
Ns[d] 0 00 0 0 24 72
Ng[d] 0000 0 0 35

TABLE 5. Calculations for As/

B.1. Data for the algebra A/(M5(A)- Ms(A)). Let us consider the elements B;
for two variables (Table 4). In each row we observe arithmetic progressions with
starting element B;[i] = ¢ — 1 and common difference ¢ — 1. For instance, the

(

sequence (4,8,12,16,20,...) follows this pattern.

The elements N; for three variables (Table 5) exhibit the following structure. In
each row we observe a sequence with a starting element B;[i] = i?> — 1. The differ-
ences between consecutive elements form an arithmetic progression with starting
element 2(i2 — 1) and difference i? — 1. For example, for i = 3 consider the sequence
(8,24,48,80,...). The differences form (16,24,32,...), which is compatible with

our conjecture.

M(As3) - M2(A3)).
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Element in the series: Degrees of grading;:
B;[d] 01 2 3 45 6 7 8 9
Bs[d] 0012 34 5 6 7 8
Bsld] 00 0 2 4 6 8 10 12 14
By[d] 00 0 0 3 6 9 12 15 18
Bs[d] 00 0 0 0 6 12 18 24 30
Bs[d] 00 0 0 0 0 8 16 24 32
Br[d] 00 0 0 0 0 0 10 20 30
Bg|d] 00 0 0 00 0 0 12 24
Byld] 00 0 0 0O O 0 0 14

TABLE 6. Calculations for As/(Ma(As) - M3(As)).

Element in the series: Degrees of grading:
N;[d] 01 2 3 4 5 6
N, ld] 0 03 9 18 30 45
N3ld] 0 0 0 8 30 66 116
Ny[d] 0 0 0 0 18 54 108
N5ld] 0 00 0 0 48 144

TABLE 7. Calculations for As/(Mz(As) - M3(As)).

B.2. Data for the algebra A/(Ms(A)- M3(A)). As one can see, the information
presented in Table 6 gives us arithmetic progressions with starting elements B;[i]
and difference B;[i]. The sequence of the first nonzero elements

(1,2,3,6,8,10,12,14,...)

stabilizes after the element 3 and behaves like an arithemtic progression with com-
mon difference two.

We consider the elements N;(A/(Mz(A) - M3(A)) (Table 7). For a sequence in a
row, the differences between consecutive elements form an arithmetic progression.
For example, consider the sequence with nonzero elements for N3

(18,54,108, 180, ... ).

The differences form (36, 54, 72, . ..) which is an arithmetic progression with starting
element 36 and common difference 18.
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Element in the series: Degrees of grading:
N;[d] 012345 6 7 8 9
No[d] 001234 5 6 7 8
N3ld] 0 00 2 5 8 11 14 17 20
Nyld] 00003 6 9 12 15 18
N5ld] 0 0000 4 8 12 16 20
Nsld] 000 0 O0O0O 5 10 15 20
N7 [d] 0 000O0OO0O O 6 12 18
Ngld] 00 00O0OO0O O 0O 7 14
Nyld] 0 000O0OO0O O O O 8
TABLE 8. Calculations for As/(As[La(A3z), L2(As)]).
Element in the series: Degrees of grading:
B;[d] 0 1 3 4 5 6
Bs[d] 0 0 3 8 15 24 35
Bs[d] 0 0 0 8 24 48 80
By[d] 0 0 0 0 15 45 90
Bsld] 0000 0 24 72
Bg[d] 0000 0 0 35

TABLE 9. Calculations for Az/(As[L2(A3), L2(A3)]).

B.3. Data for the algebra A/(A[Ly

Ni(A/(A[L2

(A), La(A)]). In this case the table for

(4), L2(A))))

(Table 8) copies the information in Table 4, except for the row for Nj.

The re-

spective sequence is an arithmetic progression with starting element 2 and common

difference 3.
The elements

Bi(4/(A
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[L2(A), L2(A)])) follow the same pattern as in Table 5.



