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Abstract

We study the lower central series that has elementsL1 = A,L2 = [L1, A] . . . , Lk =
[Lk−1, A], . . . for unital associative graded algebras A over Z. Specifically, we
consider the quotients Bk = Lk/Lk+1, each of which is graded and can be written
as the direct sum of graded components. Each component is a finitely generated
abelian group and may be further decomposed into a free part and a torsion part.
The components of the Bi depend on the underlying algebra A in subtle ways;
using Magma, we gather data, find patterns, prove that certain patterns continue,
and formulate some conjectures for the Bi over various A. We mainly consider
algebras A ∼= An(Z)/〈f〉 where f is a homogeneous relation and An is the free
associative algebra on n generators. We completely describe Bi for free algebras
modulo a relation of the form f = xy − qyx, where q ∈ Z. We also outline a
proof that shows that the ranks of A2/〈xd〉 stabilize (for d ∈ N) and present a
result concerning a case in which the Bi are finite-dimensional.



1 Introduction

The algebraic approach to geometry is based on replacing geometric spaces by

algebras of “nice” functions on them. For instance, the algebra of polynomials,

k[x1, . . . , xn], corresponds to the n-dimensional space kn. Similarly, the algebra

k[x1, . . . , xn]/(x21 + · · ·+ x2n− 1) corresponds to the sphere in the n-dimensional

space defined by the equation x21 + · · ·+ x2n − 1 = 0.

These algebras are commutative, since multiplication of functions is a com-

mutative operation. Noncommutative geometry is a field where we replace these

commutative algebras with similar noncommutative ones, pretending that they

correspond to imaginary “noncommutative spaces”. For example, one replaces

k[x1, . . . , xn] with the free algebra An = k < x1, . . . , xn >, which corresponds

to the nonexistent noncommutative n-dimensional space. Similarly, the algebra

An/(x
2
1 + · · ·+ x2n − 1) corresponds to the fictitious “noncommutative sphere”.

These noncommutative algebrasA are much larger and more complicated than

their commutative analogs. To understand their structure, one may study their

lower central series L1 = A, L2 = [A,L1], L3 = [A,L2], . . . , which samples

their noncommutative nature “in steps”. The structure of this series for algebras

of the above type, in particular, the structures of the quotients Bi := Li/Li+1, is

therefore of interest. Specifically, it would be interesting to understand how this

structure is related to the properties of the corresponding commutative algebras

Aab := A/AL2, and the corresponding geometric spaces (in particular, their sin-

gularities). This direction has been explored in a number of previous papers, and
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indeed, the structure of Bi is intimately related to the geometry of the classical

n-dimensional space. Based on [6] and later papers on this subject, we further

explore this topic, focusing on algebras with relations and on algebras over the

integers (in which case there is an additional interesting phenomenon of torsion).

Often, we will considerA to be the algebra with n generators modulo a relation

f ; we denote such an algebra byAn/〈f〉. We useAn(R) to denote the free algebra

on n generators over a ring R.

The structures of the Bi have been fully or partially characterized for small

i. For example, it is well-known that B1(An) has a basis consisting of all cyclic

words. Feigin and Shoikhet [6] showed thatB2(An(Q)) is isomorphic to the space

of all even positive closed differential forms over Qn. Etingof [7] extended this

result to more general algebras over Q, and Balagovic and Balasubramanian [2]

found the geometric description for B2(An/〈f〉) where f is a generic homoge-

neous relation and An(Q). Bhupatiraju, Etingof, Jordan, Kuszmaul, and Li [3]

determined the structure of B̄1(An)(Z), an object related to the Bi which we will

define later, and formulated several conjectures, including one regarding the tor-

sion structure of B2(An) over the integers, proving this conjecture for all but 2-

torsion. The paper is organized as follows. In Section 2, we introduce background

material. In Section 3, we present our results: a complete description of the Bi for

A/〈f〉 where f is of the form xy − qyx, the stabilization of the Bi for Bi, i ≥ 2,

in A2/〈xd〉, and the finite-dimensionality of the Bi, i ≥ 2, in algebras A for which

the following properties hold: any two elements of A are algebraically dependent,

and the radical of the abelianization of A, Rad(Aab), is finite dimensional. In sec-
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tion 4, we conclude and providing suggestions for future work. The paper ends

with an appendix in which we discuss our methods and present some of our data.

2 Preliminaries

Let A be a unital associative algebra. In this paper, unless otherwise, noted, we

work with algebras over Z; in this case, we think of A as a Z-module, i.e., an

abelian group. (In a few situations, we will want to consider A over Q; then we

think of A as a vector space over a field.)

For all associative algebras, we define a bilinear Lie bracket operation mapping

A×A to A by [a, b] = ab− ba for a, b ∈ A. This operation satisfies the following

properties:

1. [a, a] = 0 and

2. [a, [b, c]] + [b, [a, c]] + [c, [a, b]] = 0.

An algebra that has such a bracket is called a Lie algebra.

If B and C are subspaces of A, we define [B,C] as the set of all finite sums of

[b, c] where b ∈ B, c ∈ C.

We then construct the following series for A:

L1 = A

L2 = [A,L1]

...

Li+1 = [A,Li].

This series is known as the lower central series of A. Note that Li+1 is a Lie
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algebra ideal of Li. We define

Bi = Li/Li+1. (2.1)

These are the objects that we study.

We also define B̄1(A) = L1/(L2 + M3) where M3 = A · L3. This B̄1(A)

is interesting for a variety of reasons. It is obtained as the quotient of the graded

Lie algebra, ⊕iBi, by part of its center. Also, B̄1(A) exhibits a polynomial, rather

than exponential growth with respect to degree, so it is interesting to compute

combinatorially.

When A is an algebra generated by some elements x1, . . . , xn that do not sat-

isfy any polynomial relation, we writeA = An, which is said to be the free algebra

on n generators. We always grade An by assigning each xi to be of degree one.

2.1 Characterizing the Bi

Each of the algebrasA we consider is naturally graded by degree, and this induces

a grading on Li. We may write Li as a direct sum of its graded components:

Li =
⊕
j≥0

Li[j].

Thus, each Bi = Li/Li+1 = ⊕j≥0Li[j]/Li+1[j] is also graded. In all our cases,

the components of the Bi are finitely generated.

Now, we can use the structure theorem, which states that every finitely gener-
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ated abelian group G is isomorphic to the direct sum of a free component and a

torsion component. The free component is isomorphic to Zd; we call d the rank

of G and write rank(G) = d. The torsion part will be isomorphic to Z
p
d1
1
⊕Z

p
d2
2
⊕

· · · ⊕Zpdnn
for some primes p1, . . . , pn and integers d1, . . . , dn. So, to characterize

a component of the Bi, we may find its rank and torsion structure.

3 Results

3.1 Patterns

Remark. There are patterns in the ranks ofB2,B3, andB4 inA2 modulo xd+yd for

d ∈ Z. The ranks of B2 seem to form the arithmetic sequence 1, 2, 3, 4, . . . , and

the ranks of B3 seem to form the arithmetic sequence 2, 4, 6, . . . (see Tables 1-5

in the appendix). The ranks of B4 form only a quasi-arithmetic sequence: quoti-

enting by x3 +y3 produces the rank sequence 3, 7, 3 (see Table 2 in the appendix),

quotienting by x4 + y4 produces the rank sequence 3, 8, 12, 8, 3 (see Table 3 in the

appendix), quotienting by x5 + y5 produces the rank sequence 3, 8, 13, 17, 13, 8, 3

(see Table 4 in the appendix), and so on for polynomials of degree d ≤ 9. This is

an arithmetic sequence with a common difference of 5 except for the middle term,

which has a difference of 4 on either side. We conjecture that this holds for all

degrees d.
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3.2 A Complete Description of Bk(A2/〈xy − qyx〉)

Let A = A2(Z)/〈xy − qyx〉 and k be an integer with k ≥ 2. Then, we have the

the following theorem:

Theorem 3.1.

1. If q 6= ±1, then:

Bk(A)[i, j] =


Z|q−1|, i, j > 0; k < i+ j

Z, i, j > 0; k = i+ j

0, elsewhere

(3.1)

2. If q = 1, then Bk = 0 for all k.

3. If q = −1, then

Bk(A)[i, j] =


Z2, i+ j > k; i, j > 0, not all even

Z, i+ j = k; i, j > 0, not all even

0, elsewhere

(3.2)

This may be proven by direct computation: we find a basis for Lk in degree

(i, j) and then find a basis for Bk = Lk/Lk+1.
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3.3 The Rank Stabilization Theorem

An interesting pattern arises in the ranks of the Bi(A2/〈f〉) for generic f , and for

certain special f . In the generic case, where f is a homogeneous relation f in

degree d, the ranks of the Bi increase monotonically until a certain point, after

which they decrease (see Tables 1-5).

However, for certain special f , particularly f = xd, the ranks of Bi(A2/〈f〉)

increase monotonically and then stabilize, as may be seen in tables 6-9 of the

appendix. Indeed, we have:

Theorem 3.2 (The Rank Stabilization Theorem). In A2/〈xd〉, for each i ≥ 2

there exists k ∈ Z such that rank(Bi[k]) = rank(Bi[j]) for any j ∈ Z with j ≥ k.

Furthermore, for l < k, rank(Bi[l]) < rank(Bi[k]). If i ≥ 3, then k ≥ 2i+ d− 5,

and if i = 2, then k ≥ d.

3.3.1 Proof Outline

ConsiderW2, the space of polynomial vector fields in two variables with elements

f(x, y)(∂/∂x) + g(x, y)(∂/∂y) where f, g ∈ C[x, y]. This space is a Lie algebra.

Furthermore, W2 has a Lie subalgebra, W1, which is the space of polynomial

vector fields in one variable, y. Elements of W1 are of the form h(y)(∂/∂(y)) for

polynomials h(y) ∈ C[y].

It has already been established by Feigin and Shoikhet that Bi(A2) is a W2-

module for i ≥ 2 [6]. Furthermore, Arbesfeld and Jordan demonstrated that this

Bi(A2) is a finite length module and that its structure involves tensor field mod-
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ules, Fp,q with p+ q ≤ 2i− 3 for i ≥ 3 [1] (this will become important later).

Because Bi(A2) is a module over W2, it is also a module over W1. If the

algebra A we work with is no longer a free algebra, then Bi will no longer be a

W2-module; however, W1 will still act on Bi(A2/〈xd〉), and thus Bi(A2/〈xd〉) is

still a W1-module. We claim that Bi(A2/〈xd〉) is of finite length as a W1-module.

We may consider the canonical quotient mapping π that sends Bi(A2) to

Bi(A2/〈xd〉). Note that π is a mapping of modules over W1. We can directly

compute that [W1, x
dW2] ⊂ xdW1, and thus (xdW2)Bi(A2) is a W1-submodule of

Bi(A2).

Moreover, π((xdW2)Bi(A2)) = 0. This means that there exists a surjective

map π′ : Bi(A2)/((x
dW2)Bi(A2)) → Bi(A2/〈xd〉), and thus Bi(A2/〈xd〉) is a

quotient module of Bi(A2)/((x
dW2)Bi(A2)). So, to show that Bi(A2/〈xd〉) is of

finite length, we may show that Bi(A2)/((x
dW2)Bi(A2)) is finite.

Because we know that Bi(A2) is a finite length module [6], we have the fol-

lowing structure: 0 = Mn ⊂ Mn−1 ⊂ · · · ⊂ M1 ⊂ M0 = Bi(A2) where each

Mj/Mj+1 = Pj is an irreducible W2 module. We see that we have the following

commutative diagram:

0 // (xdW2)Mj+1
//

��

(xdW2)Mj
//

��

(xdW2)Mj/(x
dW2)Mj+1

//

f

��

0

0 //Mj+1
//Mj

// Pj
// 0

.

The rows are exact sequences and the vertical maps are inclusions (canonical

mappings that send an element of one algebraic object to itself as an element of

another algebraic object), which is significant because it means their kernels are
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zero. We apply the snake lemma to obtain the following long exact sequence:

0→ ker(f)→Mj+1/((x
dW2)Mj+1)→Mj/((x

dW2)Mj)→ coker(f)→ 0.

The cokernel of a mapping q : X → Y is defined to be Y/im(q). Thus,

coker(f) = Pj/(im(f)) = Pj/((x
dW2)Pj). We see that if we show that each

cokernel is of finite length, we will have shown that each Mj/((x
dW2)Mj) is

finite-length, and thus we will have our result.

Now,

Fp,q = C[x, y]⊗ Symp−q(dx, dy)⊗ (dx ∧ dy)⊗q.

We directly compute that (xdW2)Fp,q = xd−1Fp,q, and so

Fp,q/((x
dW2)Fp,q) ∼=

d−2⊕
l=0

p⊕
k=q

xl(dx)p+q−kFk,

and each Fk = C[y](dy)k is irreducible. The result that Fp,q/((x
dW2)Fp,q) is of

finite length follows.

Furthermore, Fk has dimension 1 in each degree greater than or equal to k.

So, xl(dx)p+q−kFk has dimension 1 after degree p + q + l. It follows from the

result of Arbesfeld and Jordan [1] that p + q + l ≤ 2i + d − 5, thus, the rank of

Bi(A2/〈xd〉), i ≥ 3 stabilizes from this degree onward. This shows the patterns in

B3, B4, and B5 in tables 6-9. The result for i = 2 can be obtained in like manner.

The Finite Dimensionality Theorem

We present the following theorem:
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Theorem 3.3 (The Finite Dimensionality Theorem). If any two elements x, y ∈

Aab are algebraically dependent over k, and Rad(Aab) is finite-dimensional, then

Bi(A) is finite-dimensional for i ≥ 2.

3.3.2 Motivation

This result is based on the work of Jordan and Orem [8] (and has since been

independently proven by them). We provide several examples as motivation:

Example 1. Suppose A has n generators and n − 1 generic relations. In this

case, any two generators are algebraically dependent in the abelianization Aab.

Furthermore, we may check that Rad(Aab) = {0}. So, the conditions of the

theorem hold, and we expect that in this case the Bi are finite dimensional.

Example 2. Consider the data for xd + yd in Bi(A2(Z)/〈xd + yd〉), 2 ≤ d ≤

9. The ranks of Bi[m] increase and then decrease, indicating that each Bi has

nonzero rank in only finitely many gradings. These ranks over Z are identical to

the dimensions of Bi(A2(Q)/〈xd + yd〉). As such, we wish to check if the con-

ditions of the theorem hold for A2(Q)/〈xd + yd〉. Since we have two variables,

x and y, and one relation in x and y, by definition x and y are algebraically de-

pendent. Now, we wish to consider the radical of the abelizanization of A. In

general, to abelianize an algebra of the form An(k)/〈f〉, we consider the polyno-

mial ring k[x1, . . . , xn] modulo the abelian polynomial that corresponds to f . So,

in this case, Aab = Q[x, y]/(xd + yd). Because xd + yd has no multiple factors,

Q[x, y]/(xd + yd) has no nilpotent elements, and so Rad(Q[x, y]/(xd + yd)) is

simply the zero set, which is finite-dimensional. So, the conditions of the theorem
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hold for Bi(A2(Q)/〈xd + yd〉), just as we wanted.

Example 3. Now, let us consider B2(A2/〈xd〉). Dobrovolska, Kim, and Ma

[7] showed that, for all i and j, the brackets [xi, yj] form a basis of B2(A2(Q)).

Because B2(A2(Q)/〈xd〉) is a quotient space of B2(A2(Q)), these brackets must

span B2(A2(Q)/〈xd〉). Now, the relation xd = 0 will only affect brackets [xi, yj]

where i > d. Thus, the brackets [xi, yj], 1 ≤ i ≤ d − 1, 1 ≤ j remain linearly

independent in the quotient space, and because j is arbitrary, B2(A2(Q)/〈xd〉)

is infinite dimensional. Because Aab = k[x, y]/(xd) has radical (x), which is

infinite-dimensional, this does not contradict our theorem.

Furthermore, this shows that [xi, yj], 1 ≤ i ≤ d − 1, 1 ≤ j is a basis of

B2(A2(Q/〈xd〉)), which proves the pattern we see in the ranks of B2 in tables

6-9.

Example 4. The conditions of the theorem are not satisfied for free algebras

with at least two generators, because these generators are not algebraically depen-

dent. So, it is not surprising that the ranks of the Bi increase arbitrarily in free

algebras.

Proof Outline

Let Mi = ALi be the ideal generated by Li.

By Bapat and Jordan [4], [Mj, Lk] ⊂ Lk+j if j is odd. Let k = 1 and j = 2r+

1; then we have [L1,M2r+1] ⊂ L2r+2 which implies that
∑

[xi,M2r+1] ⊂ L2r+2

for all generators xi of L1. However, by definition, if z ∈ Lj , then z = [a, b] for

a ∈ L1 and b ∈ Lj−1. Now, a is some polynomial of the xi’s. If a = a1a2, for
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some polynomials a1, a2 ∈ L1, we may apply the following identity: [a1a2, b] =

[a1, a2b] + [ba1, a2]. By definition, a2b ∈ Mj−1 and ba1 ∈ Mj−1. Because of

this, we see that [a, b] will be the sum of elements of the form [xi,Mj−1]; thus,

Lj ⊂
∑

[xi,Mj−1]. In particular, if j = 2r, then L2r ⊂
∑

[xi,M2r−1].

Now, we see (to be understood in each graded component):

dimL2r − dimL2r+2 ≤ dim
∑

[xi,M2r−1]− dim
∑

[xi,M2r+1]. (3.3)

Now, let V be the n-dimensional vector space spanned by the xi. Then, we

have the following surjections:

f : V ⊗M2r−1 →
∑

[xi,M2r−1]

g : V ⊗M2r+1 →
∑

[xi,M2r+1]

We have the following commutative diagram:

0 // ker f //

a

��

V ⊗M2r−1 //

b

��

∑
[xi,M2r−1] //

c

��

0

0 // ker g // V ⊗M2r+1
//
∑

[xi,M2r+1] // 0.

Because M2r−1 ⊂M2r+1, ker b = 0 and ker c = 0.

Now, by the snake lemma, we get a short exact sequence:

0→ coker a→ coker b→ coker c→ 0,
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which gives us that dim coker c ≤ dim coker b− dim coker a ≤ dim coker b.

By our previous equations, this means that

dim
∑

[xi,M2r−1]−dim
∑

[xi,M2r+1] ≤ dim V ⊗M2r−1−dim V ⊗M2r+1 =

dim V (dim M2r−1 − dim M2r+1) = n(dim M2r−1 − dim M2r+1).

Thus, we have the following:

dim B2r + dim B2r+1 ≤ n(dim N2r−1 + dim N2r). (3.4)

Now, recall that Lj ⊂
∑

[xi,Mj−1]; if j = 2r + 1, then L2r+1 ⊂
∑

[xi,M2r].

Thus,

dimL2r+1 − dimL2r+2 ≤ dim
∑

[xi,M2r]− dim
∑

[xi,M2r+1]. (3.5)

If we define maps:

f̂ : V ⊗M2r−1 →
∑

[xi,M2r]

ĝ : V ⊗M2r+1 →
∑

[xi,M2r+1]

then, similarly to the above, we find that

dim
∑

[xi,M2r]− dim
∑

[xi,M2r+1] ≤ n(dim M2r − dim M2r+1) Thus,

dimB2r+1 ≤ n dimN2r. (3.6)

Thus, if k ≥ 3, showing that the Ni are finite-dimensional will show that the Bi

are finite-dimensional.
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It is known that A/M3 = R is a commutative ring with product operation

a · b = 1
2
(ab + ba). Now, Ni is a module over R. We define the operation as

follows: Let a be the lift of a ∈ A and let m be the lift of m ∈ Ni. Then, take

1
2
(am+ma). Since m ∈Mi, 1

2
(am+ma) ∈Mi and thus we may consider a ·m

in Ni to be the equivalence class of 1
2
(am+ma).

The first question is whether this product is well-defined. To show that it is,

consider m′ to be an alternative lift of m ∈ Ni. By definition, m −m′ ∈ Mi+1,

and thus 1
2
(a(m−m′) + (m−m′)a) ∈Mi+1, which means that our product does

not depend on the choice of the lift of m. Now, let a′ be an alternative lift of a.

By definition, a − a′ ∈ M3; thus (a − a′)m ∈ M3Mi and m(a − a′) ∈ MiM3,

and by Corollary 1.4 in [4], (a− a′)m and m(a− a′) are both elements of Mi+2,

and so 1
2
((a − a′)m −m(a − a′)) ∈ Mi+1. This shows that the product does not

depend on the choice of the lift of a. Thus, the product operation is well-defined.

To check that Ni is a module with this product is straightforward.

It is also known that if R is a finitely generated algebra over Q, and M is a

finitely generated module over R, then dimQM is finite iff M has finite support.

In this case, if supp(Ni) is finite, then the Ni are finite. By definition, supp(Ni) is

the set of all prime ideals p of R such that (Ni)p 6= 0, where (Ni)p is the fraction

module S−1M and S = R \ p.

Now, let Aab = A/M2 = X . We have posited that if X is at most one-

dimensional as ring and that if Rad(X) is finite-dimensional as a vector space,

then the Bi are finite-dimensional.
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We have a short exact sequence:

0→M2/M3 → A/M3 = R→ A/M2 = X → 0.

Let I = M2/M3, and note that I is an ideal of R. Because A has n generators,

then by Lemma 2.5 of [8], In = 0; thus, the prime ideals of R will correspond to

the prime ideals of R/I = X .

Our goal is still to show that there are only finitely many prime ideals p s.t.

(Ni)p 6= 0. If we can show that, if (Ni)p 6= 0, then p corresponds to a singular

ideal of X , then we will be done. But this is equivalent to showing that (Ni)p = 0

for smooth prime ideals p, and to accomplish this, we only need show that the

completion of Ni(A), or (Ni(A))(m), is 0 when m is a maximal smooth ideal

of X . By [8], (Ni(A))(m) = Ni(A(m)). By our assumption that X is at most

1-dimensional, A(m) = k[[t]], the (commutative) one-variable power series ring

over k. Thus, Ni(A(m)) = 0, and we are done.

4 Conclusion

Thus, we have given the structure of Bi for an infinite class of algebras, and we

have presented an outline of a proof for a result that partially characterize the Bi

for another infinite class of algebras. We have also shown that the Bi will be

finite-dimensional under certain conditions. Finally, we have gathered data which

should be useful in future explorations of this problem and similar problems. Top-
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ics for future investigation include:

• Working with an algebra modulo more than one relation; in particular, gen-

eralizing the stabilization theorem to An/〈xd11 , . . . , xdrn−1〉, where r < n.

More generally, we may consider An/〈g1, . . . , gn−1〉, where the gi are ho-

mogeneous noncommutative polynomials of x1, . . . , xn−1 whose images

form a regular sequence in C[x1, . . . , xn]. Still more generally, we may

consider An/〈f1 . . . fn−k〉 with f1, . . . , fn−k homogeneous polynomials of

x1, . . . , xn−k, which are a regular sequence in C[x1, . . . , xn] (for example,

perhaps fi = xdii ). We expect that the dimensions of the homogeneous parts

ofBi[m] are polynomials inm of degree k−1 form > 0. The proof may be

similar to that of A2/〈xd〉, involving the representation theory of Wk, which

is the Lie algebra of polynomial vector fields.

• Further investigating the structure of B̄1.
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6 Appendix

6.1 Methods

To determine the free and torsion components of the Bi, we use the computer pro-

gram Magma [5]. Code exists to compute the Bi over Q, Z, and Fp for algebras

A = An or A = An/〈f〉 for a relation f . The codes work by sequentially com-

puting each integer grading for every Li and Bi. As the gradings get larger, the

computational complexity increases. Thus, it is usually only feasible to compute

small gradings, especially when working with several variables. Because of the

computational complexity, we compute up to at most 12 gradings in two variables,

8 gradings in three variables, and 6 gradings in 4 variables. Note that this also lim-

its the number of Bi we can compute, because Bi is zero in all degrees less than

i.

We compute gradings of Bi for many different relations over the integers. Our

primary examples are quotients of An by xd1 + xd2 + · · · + xdn for d ∈ Z. We also

consider relations xy − qyx and xd in A2.

We present a portion of our data for the Bi over Z, formatted formatted as

follows: gradings are designated in the first row of the table, and the Bi are des-

ignated in the first column. Nonparenthetical terms correspond to rank, and par-

enthetical terms indicate torsion. Tables 1-5 are for algebras of the form A =

An/〈xd + yd〉, and Tables 6-9 are for algebras of the form A = A2/〈xd〉.
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A2/〈x2 + y2〉 0 1 2 3 4 5 6 7 8 9 10 11 12

B2 0 0 1 (22) (2) (22) (2) (22) (2) (22) (2) (22) (2)

B3 0 0 0 2 (22) (24) (22) (24) (22) (24) (22) (24) (22)

B4 0 0 0 0 2 (24) (23) (26) (23) (26) (23) (26) (23)

B5 0 0 0 0 0 4 (23) (26) (24) (28) (24) (28) (24)

B6 0 0 0 0 0 0 3 (26) (24) (28) (25) (210) (25)

B̄1 1 2 2 2 2(2) 2 2(2) 2 2(2) 2 2(2) 2 2(2)

Table 1: A = A2/〈x2 + y2〉

A2/〈x3 + y3〉 0 1 2 3 4 5 6 7 8 9 10 11

B2 0 0 1 2 1(32) (33) (32) (33) (33) (32) (33) (33)

B3 0 0 0 2 4 2(34) (36) (36) (36) (36) (36) (36)

B4 0 0 0 0 3 7(2) 3(22 · 37) (22 · 314) (314) (312) (314) (314)

B5 0 0 0 0 0 6 13(22) 6(26 · 314) (25 · 325) (22 · 325) (327) (327)

B6 0 0 0 0 0 0 9 22(25) 10(212 · 322) (212 · 340) (25 · 348) (22 · 350)

B̄1 1 2 3 3 3(2) 3 3(3) 3 3 3(3) 3 3

Table 2: A = A2/〈x3 + y3〉

A2/〈x4 + y4〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 2 3 2(42) 1(22 · 4) (44) (2 · 44) (44) (22 · 44)

B3 0 0 0 2 4 6 4(2 · 43) 2(46) (24 · 44) (48) (22 · 46)

B4 0 0 0 0 3 8 12(2 · 5) 8(24 · 32 · 46 · 52) 3(28 · 34 · 49 · 52) (28 · 32 · 412) (214 · 46)

B5 0 0 0 0 0 6 15 24(22 · 52) 17(213 · 34 · 48 · 54) 6(218 · 36 · 418 · 54) (232 · 37 · 414)

B6 0 0 0 0 0 0 9 30 46(26 · 4 · 55) 34(226 · 310 · 418 · 510) 12(261 · 318 · 422 · 59)

B̄1 1 2 3 4 4(2) 4 4(22 · 3) 4 4(2 · 4) 4 4 · (22)

Table 3: A = A2/〈x4 + y4〉

A2/〈x5 + y5〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 2 3 4 3(52) 2(53) 1(54) (55) (54)

B3 0 0 0 2 4 6 8 6(54) 4(56) 2(58) (510)

B4 0 0 0 0 3 8 13 17(2 · 5) 13(42 · 510) 8(22 · 42 · 517) 3(22 · 42 · 522)

B5 0 0 0 0 0 6 15 26 35(23 · 52) 28(26 · 42 · 520) 17(26 · 32 · 46 · 536)

B6 0 0 0 0 0 0 9 30 54 72(27 · 57 · 7) 60(218 · 32 · 44 · 543)

B̄1 1 2 3 4 5(2) 5 5(22 · 3) 5 5(4) 5 5(5)

Table 4: A = A2/〈x5 + y5〉
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A2/〈x6 + y6〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 2 3 4 5 4(22 · 32) 3(2 · 33) 2(24 · 32) (22 · 35)

B3 0 0 0 2 4 6 8 10 8(23 · 34) 6(26 · 36) 4(25 · 38)

B4 0 0 0 0 3 8 13 18 22(5 · 7) 18(26 · 38 · 54 · 72) 13(29 · 316 · 54 · 72)

B5 0 0 0 0 0 6 15 26 37(2) 46(52 · 72) 39(211 · 316 · 58 · 74)

B6 0 0 0 0 0 0 9 30 54 80 98(22 · 57 · 76 · 8)

B̄1 1 2 3 4 5(2) 6 6(22 · 3) 6 6(22 · 4) 6(32) 6(23 · 5)

Table 5: A = A2/〈x6 + y6〉

A2/〈x2〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 1(2) 1 1(2) 1 1(2) 1 1(2) 1

B3 0 0 0 2 2(2) 2(22) 2(2) 2(22) 2(2) 2(22) 2(2)

B4 0 0 0 0 2 3(22) 3(23) 3(25) 3(23 · 5) 3(24) 3(23 · 7)

B5 0 0 0 0 0 4 5(23) 5(26 · 3) 5(27 · 3) 5(28) 5(28 · 3)

B6 0 0 0 0 0 0 5 9(25) 9(210 · 3) 9(214 · 3) 9(214 · 3)

B7 0 0 0 0 0 0 0 9 15(27) 15(218 · 32 · 5) 15(224 · 32 · 5)

B8 0 0 0 0 0 0 0 0 12 24(212) 25(229 · 32 · 5)

B9 0 0 0 0 0 0 0 0 0 20 40(218)

B10 0 0 0 0 0 0 0 0 0 0 29

B̄1 1 2 2 2 2(2) 2 2(2) 2 2(2) 2 2(2)

Table 6: A = A2/〈x2〉

A2/〈x3〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 2 2(3) 2(3) 2 2(3) 2(3) 2 2(3)

B3 0 0 0 2 4 4(32) 4(32) 4(32) 4(32) 4(32) 4(32)

B4 0 0 0 0 3 7(2) 8(2 · 33) 8(22 · 36) 8(2 · 36) 8(22 · 35 · 5) 8(2 · 36)

B5 0 0 0 0 0 6 13(2) 16(23 · 36) 16(25 · 311) 16(25 · 312) 16(25 · 313)

B6 0 0 0 0 0 0 8 24(22) 31(25 · 310) 32(211 · 322) 32(210 · 328)

B7 0 0 0 0 0 0 0 16 44(23) 59(210 · 319) 60(222 · 321 · 5 · 9)

B8 0 0 0 0 0 0 0 0 25 79(25) 112(219 · 334)

B9 0 0 0 0 0 0 0 0 0 45 146(28)

B10 0 0 0 0 0 0 0 0 0 0 76

B̄1 1 2 3 3 3(2) 3 3(2 · 3) 3 3(2) 3(3) 3(2)

Table 7: A = A2/〈x3〉
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A2/〈x4〉 0 1 2 3 4 5 6 7 8 9 10
B2 0 0 1 2 3 3(4) 3(2) 3(4) 3 3(4) 3(2)

B3 0 0 0 2 4 6 6(2 · 4) 6(42) 6(2 · 4) 6(42) 6(2 · 4)

B4 0 0 0 0 3 8 12(2 · 5) 13(23 · 3 · 42 · 5) 13(23 · 32 · 43 · 5) 13(22 · 3 · 45 · 5) 13(24 · 3 · 43 · 5)

B5 0 0 0 0 0 6 15 24(2 · 52) 27(27 · 32 · 43 · 52) 27(28 · 33 · 46 · 52) 27(211 · 34 · 47 · 52)

B6 0 0 0 0 0 0 9 29(2) 48(22 · 4 · 53) 57(212 · 35 · 46 · 54) 58(221 · 39 · 412 · 54)

B7 0 0 0 0 0 0 0 18 55(2) 95(28 · 4 · 56) 113(229 · 39 · 411 · 59)

B8 0 0 0 0 0 0 0 0 29 103(23) 186(218 · 3 · 42 · 511)

B9 0 0 0 0 0 0 0 0 0 54 198(26)

B10 0 0 0 0 0 0 0 0 0 0 94
B̄1 1 2 3 4 4(2) 4 4(22 · 3) 4 4(2 · 4) 4(3) 4(22)

Table 8: A = A2/〈x4〉

A2/〈x5〉 0 1 2 3 4 5 6 7 8 9 10

B2 0 0 1 2 3 4 4(5) 4(5) 4(5) 4(5) 4

B3 0 0 0 2 4 6 8 8(52) 8(52) 8(52) 8(52)

B4 0 0 0 0 3 8 13 17(2 · 5) 18(4 · 55) 18(2 · 4 · 57) 18(2 · 4 · 57)

B5 0 0 0 0 0 6 15 26 35(22 · 52) 38(23 · 4 · 510) 38(24 · 3 · 43 · 515)

B6 0 0 0 0 0 0 9 30 53(7) 74(23 · 54 · 7) 83(28 · 42 · 520 · 7)

B7 0 0 0 0 0 0 0 18 57 106(72) 149(28 · 59 · 72)

B8 0 0 0 0 0 0 0 0 30 109(2) 212(2 · 73)

B9 0 0 0 0 0 0 0 0 0 56 211(2)

B10 0 0 0 0 0 0 0 0 0 0 98

B̄1 1 2 3 4 5(2) 5 5(22 · 3) 5 5(2 · 4) 5(3) 5(22 · 5)

Table 9: A = A2/〈x5〉
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