Characterizing Retry Policies for Microservice Applications

Alan Song (PRIMES CS)

Mentor: Lisa (Yueying) Li

PRIMES Spring Conference: May 19, 2024

What are Microservices?

Microservice Graphs

Fault Tolerance Measures

How do retry mechanisms work?

Metastable Failures

Metastable Failures in the Wild (Huang, et. al)

	ID	Date	Duration (hours)	Services Impacted	Triggers	Sustaining Effect	Mitigation
Google	GGL1 [22]	03/12/19	4.17	Gmail, Photos, Drive, Cloud Storage, various other GCP services	 load spike config change 	• cascading overload	 load shedding stop config deploy
	GGL2 [<mark>23</mark>]	10/31/19	21.5	multiple components of GCE	 software bug 	 retry 	load shedding reboot
	GGL3 [24]	04/08/20	3.2	Google BigQuery, Cloud IAM 3% of Cloud SQL HA	 config change software bug 	• retry	config rollback policy change
	GGL4 [<mark>21</mark>]	04/30/13	1.5	Google API infrastructure	 config change latent software bug 	 traffic queue growth reboots 	 config rollabck server reboot
	AWS1 [47]	04/21/11	66.7	Amazon EC2, Amazon RDS	network config change	* retry	config rollback policy change load shedding capacity increase
AWS	AWS2 [48]	06/13/14	4.23	Amazon SimpleDB	power loss	 retry 	 load shedding server restart
	AWS3 [49]	09/20/15	4.55	AWS SQS, EC2 Autoscaling, CloudWatch, AWS Console	 load spike network disruption 	 retry cascading server demotion 	 load shedding – pause metadata ops capacity increase
	AWS4 [<mark>51</mark>]	12/07/21	9.3	AWS DynamoDB, EC2, Fargate, RDS, EMR, Workspaces, AWS Console, Authorization services, internal DNS	 latent software bug triggered by scale-up led to load spike 	* retry	 load rebalancing load shedding
Azure	AZR1 [4]	07/01/20	2.65	Azure SQL DB & SQL Data Warehouse, Azure Database for MySQL/PostgreSQL/MariaDB	 unspecified load imbalance trigger latent config bug 	cascading overload	service restart
	AZR2 [4]	04/01/21	1.15	Azure DNS	 software bug leading to cache degradation 	 retry 	 unknown automation capacity increase
	AZR3 [4]	06/14/21	13.25	Management operations of many Azure Services	 latent software bug load spike 	 unspecified queue growth due to overload and timeouts 	 load shedding remove buggy softwar capacity increase
	AZR4 [4]	07/12/21	7.92	Windows Virtual Desktop, Azure Front Door, Azure CDN Standard	 deployment of software bug load spike 	 retry other unspecified 	 load rebalancing trigger hot fix policy change
Other	IBM1 [<mark>11</mark>]	06/11/21	73.53	Private DNS, HS Crypto Service, Cloudant DNS Services, Osaka, Cloudshell services	 software bug 	• retry	 load shedding policy change trigger hot fix
	SPF1 [19]	04/13	NA	core app/service UI	 load spike policy failure 	 retry 	 load shedding
	SPF2 [19]	06/04/13	8.33	core app/service UI	 load spike due to unexpected service dependency 	 retry excessive logging in failure case 	trigger hot fixload shedding
	ELC1 [39]	04/02/19	6.67	Elasticsearch Service	 unspecified maintenance unspecified error 	 load caused ZK churn causing more load 	 restart load shedding
	WIK1 [<mark>58</mark>]	03/30/21	2.25	media upload, misc queued jobs	 load spike 	 unspecified causing queue growth 	 load shedding policy change
	CCI1 [10]	07/07/15	18.33	Core product	 load spike 	 load increase due to contention 	 load shedding
	CAS1 [1]	07/27/17	NA	Partial database outage	 rolling restart 	 self-sustaining and increasing overload 	 policy change
	CAS2 [43]	2020	0.16	ably services	 load spike of certain costly operations 	 retry 	 trigger removal – operated in stable state
	FB1 [18]	NA	NA	Facebook core services	load spike	 software bug 	• hot fix

Retries are by far the most common sustaining effect!

gRPC retry options

The following table describes options for configuring gRPC retry policies:

Option	Description
MaxAttempts	The maximum number of call attempts, including the original attempt. This value is limited by GrpcChannelOptions.MaxRetryAttempts which defaults to 5. A value is required and must be greater than 1.
InitialBackoff	The initial backoff delay between retry attempts. A randomized delay between 0 and the current backoff determines when the next retry attempt is made. After each attempt, the current backoff is multiplied by BackoffMultiplier. A value is required and must be greater than zero.
MaxBackoff	The maximum backoff places an upper limit on exponential backoff growth. A value is required and must be greater than zero.
BackoffMultiplier	The backoff will be multiplied by this value after each retry attempt and will increase exponentially when the multiplier is greater than 1. A value is required and must be greater than zero.
RetryableStatusCodes	A collection of status codes. A gRPC call that fails with a matching status will be automatically retried. For more information about status codes, see Status codes and their use in gRPC 2. At least one retryable status code is required.

Testbed Setup

DSB Hotel Reservation

DeathStarBench hotel-reservation

Blueprint (Anand et. al)

Retry Mechanism Implementation

Fixed (Power-of-d) Retry:

- Launch a constant of d copies of request without delay

Fixed-interval Retry with Max Attempts

- Launch a retry with constant delay and max attempts

Exponential Backoff Policy (with random jitter)

- Launch retries with exponentially increased time interval

Implemented by us

Results: Limitations of Fixed Retry

Results: Limitations of Fixed Retry

Results: Exponential Retry

Takeaway: exponential retry is more resilient than fixed retry under load-increase triggers

Dependency graph to identify percentage of retries

Latency graph to color retried requests

Call span of different tiers of services to identify triggers

16

- 1) Study the relationship between retry policies and rate limiting policies
- 2) Study retries caused by different triggers like capacity degradation
- 3) Expand beyond simple retry policies by exploring learning-based retry mechanisms

- 1) Microservices is an important software architecture that demands high fault tolerance.
- 2) Retry mechanisms, meant to improve fault tolerance, inadvertently sustain metastable failures—failures that persist even when a trigger is removed.
- 3) We study the relationship between retry policies and performance of a microservice application operating under duress.

Results: Limitations of Exponential Retry

Example of Metastable Failure

Retry needs to be system-context aware

How do Retries Cause Metastable Failures?

Metastable Failures in Serverless

- Case #2: Load Increase (Retries) Leading to Sustaining SLO Violations
 - 1. Given a function running at the normal load
 - 2. When there's resource contention leading to capacity degradation, due to cold starts or threshold cap, SLO violations happen
 - 3. The common strategy for function end-users trigger retries which in turn result in increased load and more cold-started containers
 - 4. Even after the resource contention is gone, SLO violations still exist

However, resource contention can be transient so instead of creating new containers (cold starts), a better move is to do load shedding.

Sol: A better controller that can differentiate transient or sustaining contention to avoid metastable failures.

Results: Limitations of Fixed Retry

Limitations of Retry

Latency by Percentile Distribution

Latency (milliseconds)

A Familiar Experience

What causes metastable failures?

27