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Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

@ The sum graph G(V, E) with sum graph labeling L C Z* is given by
V=1Land (u,v) € Eifand only if u+ v € L.
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Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

@ The sum graph G(V, E) with sum graph labeling L C Z* is given by
V=1Land (u,v) € Eifand only if u+ v € L.

Example: Sum Graph Labeling of G

5 4 1
®

3
L =11,2,3,4,5] is a sum graph labeling of G
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The Existence of a Sum Graph Labeling

Natural Question
@ Does every graph have a sum graph labeling?
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The Existence of a Sum Graph Labeling

Natural Question
@ Does every graph have a sum graph labeling?

Answer
o No!

@ No connected graph is a sum graph.
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Lower Bound on Isolated Vertices

Theorem (Harary, '90)
e For any G, there is a finite 0(G) such that G U /54(¢) is a sum graph.
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Lower Bound on Isolated Vertices

Theorem (Harary, '90)

e For any G, there is a finite 0(G) such that G U /54(¢) is a sum graph.

Example: o(Py) =1
2

89 1 3 5 8
® 6 0 06 o 06 0 o o ¢

Theorem (Harary, '90)
e It holds that o(P,) = 1.
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Upper Bound on Isolated Vertices

Natural Question
@ Is there an upper bound on the number of isolated vertices?
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Upper Bound on Isolated Vertices?

Natural Question
@ Is there an upper bound on the number of isolated vertices?

Answer
e No!
2 5 2
o
5 4 1 4 1
® o
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o
3 500 3
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Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique

3 7
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o o
4 10
L=11,3,4,5,6] L=13,7,10,13,16]

On the Spum and Sum-Diameter of Paths Overview 4/19



Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique

3 7
6 5 1 16 13 3
o o
4 10
L=11,3,4,5,6] L=13,7,10,13,16]

Natural question

@ What is the smallest possible range (max — min) of the labels?

On the Spum and Sum-Diameter of Paths Overview 4/19



Spum(G)

Spum (Goodell et al., '90)

@ The minimum range(L) over all sum graphs G U /() with labels L.
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Spum(G)

Spum (Goodell et al., '90)

@ The minimum range(L) over all sum graphs G U Is(c) with labels L.

v

Example: spum(G) =6—-1=5

4
L=11,3,4,5,6|
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Complete Graphs K,

Example: Ky
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Complete Graphs K,

Example: Ky

Theorem (Bergstand et al, '89)
o It holds that o(K,) is 2n — 3.

Theorem (Li, '22)
o It holds that spum(K,) is 4n — 6.
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Complete Graphs K,

Example: spum(Ks) =4 x5—6 =14

7
17 15 11 8 19
® O ®
o
® O o
18 16 20
10 9

Theorem (Bergstand et al, '89)
@ It holds that o(Kj,) is 2n — 3.

Theorem (Li, '22)
o It holds that spum(K,) is 4n — 6.
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Cycles C,

Example: G5
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Cycles C,

Example: G5

Theorem (Fernau, Ryan, and Sugeng, '08)
@ It holds that o(C,) = 2.

Theorem (Li, '22)
@ It holds that spum(C,) = 2n — 1.
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Cycles C,

Example: spum(G) =2x5—-1=9
2

[ J
9

6 5

Theorem (Fernau, Ryan, and Sugeng, '08)
@ It holds that o(C,) = 2.

Theorem (Li, '22)
@ It holds that spum(C,) = 2n— 1.
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Stars Ki

Example: K3
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Stars Ki

Example: K3

Theorem (Ellingham, '93)

@ The sum number of any tree is 1.

Theorem (Singla, Tiwari and Tripathi, '21)
o It holds that spum(Kj ) = 2n — 1.
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Stars Ki

Example: spum(Ki;3) =2x3—-1=5

Theorem (Ellingham, '93)

@ The sum number of any tree is 1.

Theorem (Singla, Tiwari and Tripathi, '21)
e It holds that spum(Ki ) = 2n — 1.
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The Sum Number of Paths P,

Example: Pq

Theorem (Harary, '90)
e It holds that o(P,) = 1.

On the Spum and Sum-Diameter of Paths Results 9/19



The Sum Number of Paths P,

Example: Py
89 1 2 3 5 8 13 21 34 55
o 6 06 06 0 o6 o o o o
Theorem (Harary, '90)
o It holds that o(P,) = 1.
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The Spum of Paths P,

Theorem (Singla, Tiwari, and Tripathi, '21)
It holds that

2n—3,2 1] ifn>9isodd
spurn(Pn)e{[n ,2n+1] ifn>9iso

[2n—3,2n42] if n>9is even
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The Spum of Paths P,

Theorem (Li, '22)
It holds that

spum(P,) € {[2n —2,2n—1] ifn>8is even

[2n—2,2n41] ifn>9isodd
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The Spum of Paths P,

Theorem (Li, '22)
It holds that

[2n —2,2n—1] if n > 8 is even

spum(P,) € .
pum(P) {[2n—2,2n+1] if n>9is odd

Conjecture (Li, '22)
It holds that

2n—1 if n> 8 1is even
2n+1 ifn>9isodd
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The Spum of Paths P,

Theorem (Li, '22)
It holds that

[2n—2,2n—1] if n > 8 is even

spum(P,) € .
pum(P) {[2n—2,2n+1] if n>9is odd

Conjecture (Li, '22)
It holds that

2n—1 if n > 8 1is even
2n+1 ifn>9isodd

spum(P,) = {
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The Spum of Paths P,

Theorem (B.C.T., '23)
It holds that

2n—3 if3<n<6
2n—2 ifn=7

2n—1 if n>8is even
2n+1 if n>9is odd

spum(P,) =

On the Spum and Sum-Diameter of Paths Results 9 /19



Integral Sum Number

Natural Question
@ Why restrict L to positive labels? What if we allow negative labels? J
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Natural Question
@ Why restrict L to positive labels? What if we allow negative labels?

v

Theorem (Harary, '94)

@ For any G, there is a finite ((G) such that G U () is an integral
sum graph.
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Integral Sum Number

Natural Question
@ Why restrict L to positive labels? What if we allow negative labels?

v

Theorem (Harary, '94)

@ For any G, there is a finite ((G) such that G U () is an integral
sum graph.

Integral Spum (Singla, Tiwari, and Tripathi, '21)
@ The minimum range(L) over all G U I¢(g) with labels L C Z.
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Integral Sum Number

Natural Question
e Can ¢(G) = 0 for connected graphs G?

Does our argument for o(G) work for ((G)?

<«
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Integral Sum Number

Natural Question
e Can ((G) = 0 for connected graphs G?

Does our argument for o(G) work for ((G)?

-

Example: ((G) = 0 for Pi

6 -1 12 3 9 7 5
o & 0 & 6 & o ¢

15
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Integral Spum

Natural Question
@ Can ispum be less than spum?

Example: spum(Py) =20 —1 =19
16 1 15 5 11 9
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Integral Spum

Natural Question
@ Can ispum be less than spum?

Example: spum(Pyp) =20 —1 =19

16 1 15 5 11 9 7 13 3 17 20
oo o 0 0 06 06 o o o o
Example: ispum(Pyo) = 16 — (—1) = 17
6 -1 12 3 9 7 5 1 15
oo O 0 0 0 ¢ o0
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Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

2n—3 if nis even

If n>7, then 2n — 5 < ispum(P,) < 5 .
5(n—3) if nisodd
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Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

2n—3 if ni
If n>7, then 2n — 5 < ispum(P,) < 5” 1 n TS even
5(n—3) if nisodd

Conjecture (Singla, Tiwari, and Tripathi, '21)

2 _ -f .
If n > 7, then ispum(P,) = 5” 3 1 n ?S even .
5(n—3) if nisodd
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Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

2n—3 if nis even

If n>7, then 2n — 5 < ispum(P,) < 5 .
5(n—3) if nisodd

Conjecture (Singla, Tiwari, and Tripathi, '21)

2n—3 if nis even

If n>7, then ispum(P,) = .
- pum(F) {g(n—3) if n is odd

Theorem (B.C.T., '23)

2n—3 if nis even

If n>7, then 2n — 3 < ispum(P,) < .
- =P (n)_{g(n—E}) if nis odd
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Sum-Diameter and Integral Sum-Diameter

Natural Question
@ What if we allow an arbitrary number of isolated vertices?
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Sum-Diameter and Integral Sum-Diameter

Natural Question
@ What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, '22)
@ The sd(G) is the minimum range(L) over all G U I5,(g) with labels L.

v

Example: sd(Pg) =21 -7 =14

o0 06 06 ¢ ¢ ¢ ¢ o o
14 7 13 8 12 9 11 10 20 21
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Sum-Diameter and Integral Sum-Diameter

Natural Question

@ What if we allow an arbitrary number of isolated vertices and allow
for L C 7Z7?
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Natural Question

@ What if we allow an arbitrary number of isolated vertices and allow
for L C 7Z7?

Integral Sum-Diameter (Li, '22)

@ The isd(G) is the minimum range(L) over all G U I>(g) with labels
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Sum-Diameter and Integral Sum-Diameter

Natural Question

@ What if we allow an arbitrary number of isolated vertices and allow
for L C 7Z7?

Integral Sum-Diameter (Li, '22)

@ The isd(G) is the minimum range(L) over all G U I>(g) with labels
LCZ.

Example: sd(Pg) =21 —7 = 14

oo 06 ¢ ¢ ¢ ¢ ¢ o o
14 7 13 8 12 9 11 10 20 21

Example: isd(Pg) = 12 — (—
® . ® . . oo ©°
8 3 7
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spum, sd, ispum, and isd

LCZ* LCZ

Minimum Number of Isolated Vertices spum ispum

Arbitrary Number of Isolated Vertices sd isd
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Results on Sum-Diameter

Proposition (Li, '22)
If n >3, then 2n —3 <sd(P,) <2n-—2.
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Results on Sum-Diameter

Proposition (Li, '22)
If n >3, then 2n —3 <sd(P,) <2n-—2.

Theorem (B.C.T., '23)
If n>7, then sd(P,) =2n— 2.
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Results on Integral Sum-Diameter

Proposition (Li, '22)
2n—2 if nis odd

2n—3 if nis even

If n >3, then 2n — 5 <isd(P,) < {
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Results on Integral Sum-Diameter

Proposition (Li, '22)

2n—2 if nis odd

2n—3 if nis even

If n >3, then 2n — 5 <isd(P,) < {

Theorem (B.C.T., '23)
2n—2 if nis odd

2n—3 if nis even

If n > 27, then isd(P,) = {

On the Spum and Sum-Diameter of Paths Results 16 / 19



Conclusion

Best Known Bounds for n > 27

LC7Zt LCZ
[2n — 2,2n — 1]
for even n
ni spum(P,) C
Minimum Number D N
of Isolated Vertices forodd
(Li, '22)
Arbitrary Number
of Isolated Vertices
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Best Known Bounds for n > 27

LCzt LCZ
[n — 2,20 — 1] Pn — 5,20 — 3]
for even n for even n
Minimum Number | ey o S sy
of Isolated Vertices foroad for odd
(Li, 22) (Singla, Tiwari, and Tripathi, '21)

Arbitrary Number
of Isolated Vertices
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Conclusion

Best Known Bounds for n > 27

Minimum Number
of Isolated Vertices

Arbitrary Number
of Isolated Vertices

LCZ*

20 — 2,20 — 1]

for even n
spum(P,) C

20 — 2,20 + 1]

for odd n

(Li, '22)

[on — 5,20 — 3]

for even n
ispum(P,) C

f2n —5, 2(n — 3)]

for odd n

(Singla, Tiwari, and Tripathi, '21)

sd(P,) C [2n — 3,2n — 2]

(Li, '22)
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Best Known Bounds for n > 27

Minimum Number
of Isolated Vertices

LCZ*

20 — 2,20 — 1]

for even n
spum(P,) C

20 — 2,20 + 1]

for odd n

(Li, '22)

[on — 5,20 — 3]

for even n
ispum(P,) C

f2n —5, 2(n — 3)]

for odd n

(Singla, Tiwari, and Tripathi, '21)

[2n — 5,2n — 3]

for even n

H sd(P,) C [2n — 3,2n — 2] isd(P,) C
Arbitrary Number fn— 5.2m — 2
of Isolated Vertices oo
(Li, 22) (L 22)
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Conclusion

Theorems (B.C.T., '23)
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. . 2n — 1
Minimum Number oy e
spum(P,) -

of Isolated Vertices mel
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Conclusion

Theorems (B.C.T., '23)

Minimum Number
of Isolated Vertices

Arbitrary Number
of Isolated Vertices

LCZ* LCZ
2n — 1 =2n — 3
for even n for even n
spum(P,) = ispum(P,)
2n 4+ 1 E[zn—z,g(n—s)]
for odd n for odd n
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Minimum Number
of Isolated Vertices

Arbitrary Number
of Isolated Vertices

LCzZt

2n — 1 =2n — 3
for even n for even n
spum(P,) = ispum(P,)
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Conclusion

Theorems (B.C.T., '23)
LCz* LC7Z

Minimum Number
of Isolated Vertices

Arbitrary Number
of Isolated Vertices

sd(P)A 2n — 2
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