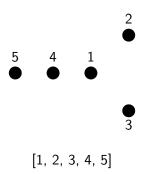
On the Spum and Sum-Diameter of Paths

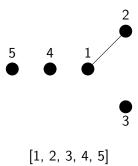
Aryan Bora and Lucas Tang

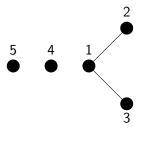
Mentor: Yunseo Choi

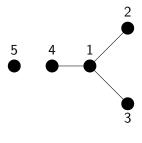
William P. Clements High School and Interlake High School

October 14-15, 2023 MIT PRIMES Conference

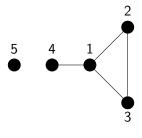




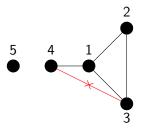




[1, 2, 3, 4, 5]



[1, 2, 3, 4, 5]



[1, 2, 3, 4, 5]

Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

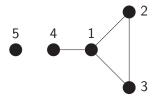
• The sum graph G(V, E) with sum graph labeling $L \subseteq \mathbb{Z}^+$ is given by V = L and $(u, v) \in E$ if and only if $u + v \in L$.

Sum Graphs and Sum Graph Labelings

Sum Graphs (Harary, '90)

• The sum graph G(V, E) with sum graph labeling $L \subseteq \mathbb{Z}^+$ is given by V = L and $(u, v) \in E$ if and only if $u + v \in L$.

Example: Sum Graph Labeling of G



L = [1, 2, 3, 4, 5] is a sum graph labeling of G

Natural Question

Does every graph have a sum graph labeling?

Natural Question

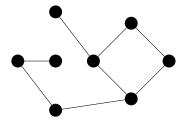
• Does every graph have a sum graph labeling?

Answer

Natural Question

• Does every graph have a sum graph labeling?

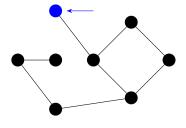
Answer



Natural Question

• Does every graph have a sum graph labeling?

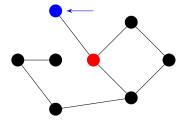
Answer



Natural Question

• Does every graph have a sum graph labeling?

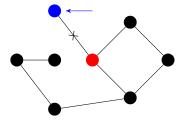
Answer



Natural Question

• Does every graph have a sum graph labeling?

Answer

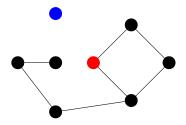


Natural Question

• Does every graph have a sum graph labeling?

Answer

No!



No connected graph is a sum graph.

Lower Bound on Isolated Vertices

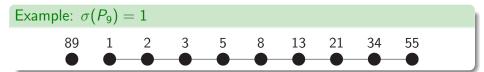
Theorem (Harary, '90)

• For any G, there is a finite $\sigma(G)$ such that $G \cup I_{\geq \sigma(G)}$ is a sum graph.

Lower Bound on Isolated Vertices

Theorem (Harary, '90)

• For any G, there is a finite $\sigma(G)$ such that $G \cup I_{\geq \sigma(G)}$ is a sum graph.



Theorem (Harary, '90)

• It holds that $\sigma(P_n) = 1$.

Upper Bound on Isolated Vertices

Natural Question

• Is there an upper bound on the number of isolated vertices?

Upper Bound on Isolated Vertices

Natural Question

• Is there an upper bound on the number of isolated vertices?

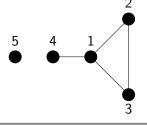
Answer

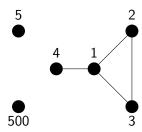
Upper Bound on Isolated Vertices

Natural Question

• Is there an upper bound on the number of isolated vertices?

Answer



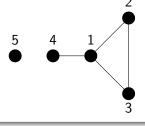


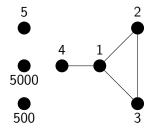
Upper Bound on Isolated Vertices?

Natural Question

• Is there an upper bound on the number of isolated vertices?

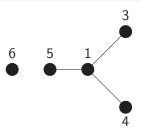
Answer



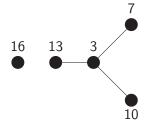


Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique



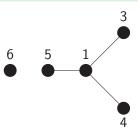
$$L = [1, 3, 4, 5, 6]$$



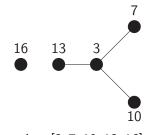
$$L = [3, 7, 10, 13, 16]$$

Labelings with the Smallest Range

Motivation: Sum graph labelings are not unique



$$L = [1, 3, 4, 5, 6]$$



$$L = [3, 7, 10, 13, 16]$$

Natural question

ullet What is the smallest possible range $(\max - \min)$ of the labels?

Spum(G)

Spum (Goodell et al., '90)

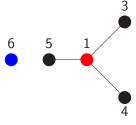
ullet The minimum $\mathrm{range}(L)$ over all sum graphs $G\cup I_{\sigma(G)}$ with labels L.

$\operatorname{Spum}(G)$

Spum (Goodell et al., '90)

ullet The minimum $\mathrm{range}(L)$ over all sum graphs $G\cup I_{\sigma(G)}$ with labels L.

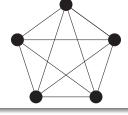
Example: spum(G) = 6 - 1 = 5



$$L = [1, 3, 4, 5, 6]$$

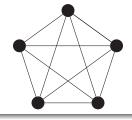
Complete Graphs K_n

Example: K_5



Complete Graphs K_n

Example: K_5



Theorem (Bergstand et al, '89)

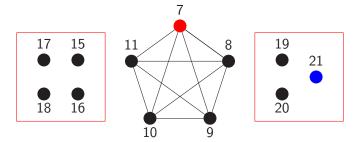
• It holds that $\sigma(K_n)$ is 2n-3.

Theorem (Li, '22)

• It holds that spum (K_n) is 4n - 6.

Complete Graphs K_n

Example: spum(
$$K_5$$
) = 4 × 5 - 6 = 14



Theorem (Bergstand et al, '89)

• It holds that $\sigma(K_n)$ is 2n-3.

Theorem (Li, '22)

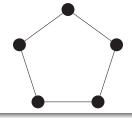
• It holds that spum (K_n) is 4n-6.

Cycles C_n

Example: C₅

Cycles C_n

Example: C_5



Theorem (Fernau, Ryan, and Sugeng, '08)

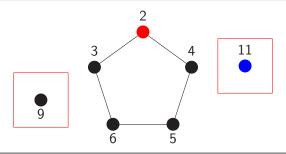
• It holds that $\sigma(C_n) = 2$.

Theorem (Li, '22)

• It holds that spum(C_n) = 2n - 1.

Cycles C_n

Example: spum(
$$C_5$$
) = 2 × 5 – 1 = 9



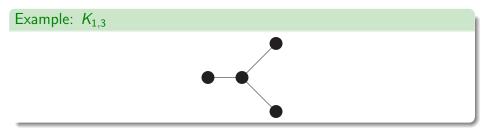
Theorem (Fernau, Ryan, and Sugeng, '08)

• It holds that $\sigma(C_n) = 2$.

Theorem (Li, '22)

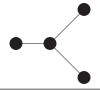
• It holds that spum(C_n) = 2n - 1.

Stars $K_{1,n}$



Stars $K_{1,n}$

Example: $K_{1,3}$



Theorem (Ellingham, '93)

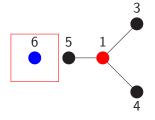
ullet The sum number of any tree is 1.

Theorem (Singla, Tiwari and Tripathi, '21)

• It holds that spum $(K_{1,n}) = 2n - 1$.

Stars $K_{1,n}$

Example: spum(
$$K_{1,3}$$
) = 2 × 3 - 1 = 5



Theorem (Ellingham, '93)

• The sum number of any tree is 1.

Theorem (Singla, Tiwari and Tripathi, '21)

• It holds that spum $(K_{1.n}) = 2n - 1$.

The Sum Number of Paths P_n

Example: P_9

Theorem (Harary, '90)

• It holds that $\sigma(P_n) = 1$.

The Sum Number of Paths P_n

Theorem (Harary, '90)

• It holds that $\sigma(P_n) = 1$.

Theorem (Singla, Tiwari, and Tripathi, '21)

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-3,2n+1] & \text{if } n \geq 9 \text{ is odd} \\ [2n-3,2n+2] & \text{if } n \geq 9 \text{ is even} \end{cases}.$$

Theorem (Singla, Tiwari, and Tripathi, '21)

It holds that

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-3,2n+1] & \text{if } n \geq 9 \text{ is odd} \\ [2n-3,2n+2] & \text{if } n \geq 9 \text{ is even} \end{cases}.$$

Conjecture (Singla, Tiwari, and Tripathi, '21)

$$\operatorname{spum}(P_n) = \begin{cases} 2n+1 & \text{if } n \geq 9 \text{ is odd} \\ 2n+2 & \text{if } n \geq 9 \text{ is even} \end{cases}.$$

Theorem (Singla, Tiwari, and Tripathi, '21)

It holds that

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-3,2n+1] & \text{if } n \geq 9 \text{ is odd} \\ [2n-3,2n+2] & \text{if } n \geq 9 \text{ is even} \end{cases}.$$

Conjecture (Singla, Tiwari, and Tripathi, '21)

$$\operatorname{spum}(P_n) = \begin{cases} 2n+1 & \text{if } n \geq 9 \text{ is odd} \\ 2n+2 & \text{if } n \geq 9 \text{ is even} \end{cases}.$$

Theorem (Li, '22)

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-2,2n-1] & \text{if } n \geq 8 \text{ is even} \\ [2n-2,2n+1] & \text{if } n \geq 9 \text{ is odd} \end{cases}.$$

Theorem (Li, '22)

It holds that

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-2,2n-1] & \text{if } n \geq 8 \text{ is even} \\ [2n-2,2n+1] & \text{if } n \geq 9 \text{ is odd} \end{cases}.$$

Conjecture (Li, '22)

$$\operatorname{spum}(P_n) = \begin{cases} 2n-1 & \text{if } n \geq 8 \text{ is even} \\ 2n+1 & \text{if } n \geq 9 \text{ is odd} \end{cases}.$$

Theorem (Li, '22)

It holds that

$$\operatorname{spum}(P_n) \in \begin{cases} [2n-2,2n-1] & \text{if } n \geq 8 \text{ is even} \\ [2n-2,2n+1] & \text{if } n \geq 9 \text{ is odd} \end{cases}.$$

Conjecture (Li, '22)

$$\operatorname{spum}(P_n) = \begin{cases} 2n-1 & \text{if } n \geq 8 \text{ is even} \\ 2n+1 & \text{if } n \geq 9 \text{ is odd} \end{cases}.$$

Theorem (B.C.T., '23)

$$\operatorname{spum}(P_n) = \begin{cases} 2n - 3 & \text{if } 3 \le n \le 6 \\ 2n - 2 & \text{if } n = 7 \\ 2n - 1 & \text{if } n \ge 8 \text{ is even} \\ 2n + 1 & \text{if } n \ge 9 \text{ is odd} \end{cases}.$$

Natural Question

ullet Why restrict L to positive labels? What if we allow negative labels?

Natural Question

• Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, '94)

• For any G, there is a finite $\zeta(G)$ such that $G \cup I_{\zeta(G)}$ is an integral sum graph.

Natural Question

• Why restrict L to positive labels? What if we allow negative labels?

Theorem (Harary, '94)

• For any G, there is a finite $\zeta(G)$ such that $G \cup I_{\zeta(G)}$ is an integral sum graph.

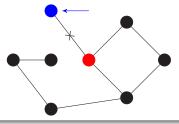
Integral Spum (Singla, Tiwari, and Tripathi, '21)

• The minimum $\operatorname{range}(L)$ over all $G \cup I_{\mathcal{C}(G)}$ with labels $L \subseteq \mathbb{Z}$.

Natural Question

• Can $\zeta(G) = 0$ for connected graphs G?

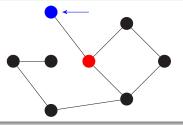
Does our argument for $\sigma(G)$ work for $\zeta(G)$?



Natural Question

• Can $\zeta(G) = 0$ for connected graphs G?

Does our argument for $\sigma(G)$ work for $\zeta(G)$?



Integral Spum

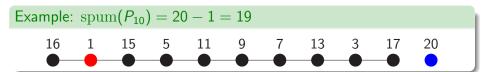
Natural Question

• Can ispum be less than spum?

Integral Spum

Natural Question

• Can ispum be less than spum?



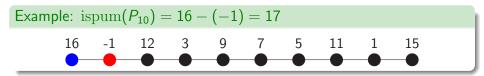
Integral Spum

Natural Question

• Can ispum be less than spum?

Example: spum
$$(P_{10}) = 20 - 1 = 19$$

16 1 15 5 11 9 7 13 3 17 20



Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

If
$$n \geq 7$$
, then $2n-5 \leq \operatorname{ispum}(P_n) \leq \begin{cases} 2n-3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n-3) & \text{if } n \text{ is odd} \end{cases}$.

Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

If
$$n \ge 7$$
, then $2n - 5 \le \operatorname{ispum}(P_n) \le \begin{cases} 2n - 3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n - 3) & \text{if } n \text{ is odd} \end{cases}$.

Conjecture (Singla, Tiwari, and Tripathi, '21)

If
$$n \ge 7$$
, then ispum $(P_n) = \begin{cases} 2n-3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n-3) & \text{if } n \text{ is odd} \end{cases}$.

Integral Spum of Paths

Theorem (Singla, Tiwari, and Tripathi, '21)

If
$$n \ge 7$$
, then $2n - 5 \le \operatorname{ispum}(P_n) \le \begin{cases} 2n - 3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n - 3) & \text{if } n \text{ is odd} \end{cases}$.

Conjecture (Singla, Tiwari, and Tripathi, '21)

If
$$n \ge 7$$
, then ispum $(P_n) = \begin{cases} 2n-3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n-3) & \text{if } n \text{ is odd} \end{cases}$.

Theorem (B.C.T., '23)

If
$$n \ge 7$$
, then $2n - 3 \le \operatorname{ispum}(P_n) \le \begin{cases} 2n - 3 & \text{if } n \text{ is even} \\ \frac{5}{2}(n - 3) & \text{if } n \text{ is odd} \end{cases}$.

Natural Question

• What if we allow an arbitrary number of isolated vertices?

Natural Question

• What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, '22)

• The $\mathrm{sd}(G)$ is the minimum $\mathrm{range}(L)$ over all $G \cup I_{\geq \sigma(G)}$ with labels L.

Natural Question

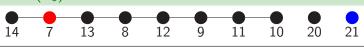
• What if we allow an arbitrary number of isolated vertices?

Sum-Diameter (Li, '22)

• The $\mathrm{sd}(G)$ is the minimum $\mathrm{range}(L)$ over all $G \cup I_{\geq \sigma(G)}$ with labels L.

Example:
$$spum(P_8) = 16 - 1 = 15$$

Example:
$$sd(P_8) = 21 - 7 = 14$$



Natural Question

• What if we allow an arbitrary number of isolated vertices **and** allow for $L \subseteq \mathbb{Z}$?

Natural Question

• What if we allow an arbitrary number of isolated vertices **and** allow for $L \subseteq \mathbb{Z}$?

Integral Sum-Diameter (Li, '22)

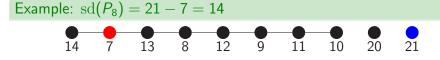
• The $\operatorname{isd}(G)$ is the minimum $\operatorname{range}(L)$ over all $G \cup I_{\geq \zeta(G)}$ with labels $L \subset \mathbb{Z}$.

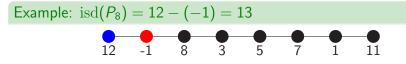
Natural Question

• What if we allow an arbitrary number of isolated vertices **and** allow for $L \subseteq \mathbb{Z}$?

Integral Sum-Diameter (Li, '22)

• The $\operatorname{isd}(G)$ is the minimum $\operatorname{range}(L)$ over all $G \cup I_{\geq \zeta(G)}$ with labels $L \subseteq \mathbb{Z}$.





spum, sd, ispum, and isd

 $L \subseteq \mathbb{Z}^+$ $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

spum ispum

Arbitrary Number of Isolated Vertices

sd isd

Results on Sum-Diameter

Proposition (Li, '22)

If $n \ge 3$, then $2n - 3 \le sd(P_n) \le 2n - 2$.

Results on Sum-Diameter

Proposition (Li, '22)

If $n \geq 3$, then $2n - 3 \leq \operatorname{sd}(P_n) \leq 2n - 2$.

Theorem (B.C.T., '23)

If $n \geq 7$, then $sd(P_n) = 2n - 2$.

Results on Integral Sum-Diameter

Proposition (Li, '22)

If
$$n \ge 3$$
, then $2n - 5 \le \operatorname{isd}(P_n) \le \begin{cases} 2n - 2 & \text{if } n \text{ is odd} \\ 2n - 3 & \text{if } n \text{ is even} \end{cases}$.

Results on Integral Sum-Diameter

Proposition (Li, '22)

If
$$n \ge 3$$
, then $2n - 5 \le \operatorname{isd}(P_n) \le \begin{cases} 2n - 2 & \text{if } n \text{ is odd} \\ 2n - 3 & \text{if } n \text{ is even} \end{cases}$.

Theorem (B.C.T., '23)

If
$$n \ge 27$$
, then $\operatorname{isd}(P_n) = \begin{cases} 2n-2 & \text{if } n \text{ is odd} \\ 2n-3 & \text{if } n \text{ is even} \end{cases}$.

Best Known Bounds for n > 27

 $L \subseteq \mathbb{Z}^+$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

(Li, '22)

Best Known Bounds for n > 27

$$L \subseteq \mathbb{Z}^+$$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) \subseteq \begin{cases} [2n-2,2n-1] \\ \text{for even } n \\ \\ [2n-2,2n+1] \\ \text{for odd } n \end{cases}$$

$$\operatorname{ispum}(P_n) \subseteq \begin{cases} [2n-5, 2n-3] & \text{for even } n \\ \\ [2n-5, \frac{5}{2}(n-3)] & \text{for odd } n \end{cases}$$

(Li, '22)

(Singla, Tiwari, and Tripathi, '21)

Best Known Bounds for n > 27

$$L \subseteq \mathbb{Z}^+$$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) \subseteq \begin{cases} [2n-2,2n-1] & \text{for even } n \\ [2n-2,2n+1] & \text{for odd } n \end{cases}$$

 $\operatorname{ispum}(P_n) \subseteq \begin{cases} [2n-5, 2n-3] & \text{for even } n \\ [2n-5, \frac{5}{2}(n-3)] & \text{for odd } n \end{cases}$

(Li, '22)

(Singla, Tiwari, and Tripathi, '21)

Arbitrary Number of Isolated Vertices

$$\operatorname{sd}(P_n) \subseteq [2n-3,\,2n-2]$$

(Li, '22)

Best Known Bounds for n > 27

 $L \subseteq \mathbb{Z}^+$

 $L \subset \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) \subseteq \begin{cases} [2n-2,2n-1] & \text{for even } n \\ \\ [2n-2,2n+1] & \text{for odd } n \end{cases}$$

$$\operatorname{ispum}(P_n) \subseteq \begin{cases} [2n-5,2n-3] & \text{for even } n \\ [2n-5,\frac{5}{2}(n-3)] & \text{for odd } n \end{cases}$$

(Li, '22)

(Singla, Tiwari, and Tripathi, '21)

Arbitrary Number of Isolated Vertices

$$\operatorname{sd}(P_n) \subseteq [2n-3,\,2n-2]$$

(Li, '22)

$$\operatorname{isd}(P_n) \subseteq \begin{cases} [2n-5, 2n-3] & \text{for even } n \\ [2n-5, 2n-2] & \text{for odd } n \end{cases}$$

(Li, '22)

Theorems (B.C.T., '23)

 $L \subseteq \mathbb{Z}^+$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) = \begin{cases} 2n - 1 & \text{for even } n \\ 2n + 1 & \text{for odd } n \end{cases}$$

of Isolated Vertices

Arbitrary Number

Theorems (B.C.T., '23)

 $L \subseteq \mathbb{Z}^+$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) = \begin{cases} 2n - 1 \\ \text{for even } n \end{cases}$$

$$2n + 1 \\ \text{for odd } n$$

$$\operatorname{ispum}(P_n) \begin{cases} = 2n - 3 \\ \text{for even } n \end{cases}$$

$$\in [2n - 2, \frac{5}{2}(n - 3)]$$

$$\text{for odd } n$$

Arbitrary Number

Theorems (B.C.T., '23)

 $L \subseteq \mathbb{Z}^+$

 $L\subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) = \begin{cases} 2n - 1 & \text{for even } n \\ 2n + 1 & \text{for odd } n \end{cases}$$

$$\operatorname{ispum}(P_n) \begin{cases} = 2n - 3 \\ \text{for even } n \\ \\ \in [2n - 2, \frac{5}{2}(n - 3)] \\ \text{for odd } n \end{cases}$$

$$\mathrm{sd}(P_n)\,=\,2n\,-\,2$$

Theorems (B.C.T., '23)

 $L \subseteq \mathbb{Z}^+$

 $L \subseteq \mathbb{Z}$

Minimum Number of Isolated Vertices

$$\operatorname{spum}(P_n) = \begin{cases} 2n - 1 \\ \text{for even } n \end{cases}$$

$$2n + 1 \\ \text{for odd } n$$

$$\operatorname{ispum}(P_n) \begin{cases} = 2n - 3 \\ \text{for even } n \end{cases}$$

$$\in [2n - 2, \frac{5}{2}(n - 3)]$$
for odd n

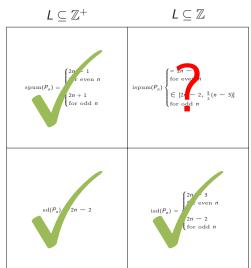
$$sd(P_n) = 2n - 2$$

$$isd(P_n) = \begin{cases} 2n - 3 \\ for even n \end{cases}$$

$$2n - 2 \\ for odd n$$

Theorems (B.C.T., '23)

Minimum Number of Isolated Vertices



Acknowledgements

Acknowledgements

- Yunseo Choi (Mentor)
- PRIMES-USA Program
- Slava Gerovitch
- Pavel Etingof
- Tanya Khovanova

References

References

- J. Goodell et al. Sum graphs. unpublished (1990).
- F. Harary. Sum graphs and difference graphs. *Congr. Numer.* 72 (1990), pp. 101–108.
- F. Harary. Sum graphs over all integers. Discrete Math. 124 (1994), pp. 99–105.
- R. Li. The Spum and Sum-Diameter of Graphs: Labelings of Sum Graphs. Discrete Math. 345.5 (2022), p. 112806.
- S. Singla, A. Tiwari, and A. Tripathi. Some results on the spum and the integral spum of graphs. *Discrete Math.* 344 (2021), P3.32.