Solving Second-order Cone Programs in Matrix Multiplication Time

Michelle Wei Mentor: Guanghao Ye

MIT PRIMES-USA

October 14-15, 2023 MIT PRIMES Conference

- Background: convex optimization and second-order cone programming (SOCP)
- Existing algorithms: interior point methods
- My work: developing an efficient SOCP algorithm

What is convex optimization?

Minimization of a convex function f(x) over a convex set C.

 $\min_{x\in C} f(x)$

3/19

Subsets of Convex Optimization

Second-order cone programs provide a general framework for solving a wide range of linear and quadratic programming problems with many applications in:

- Financial portfolio optimization
- Engineering and control systems
- Energy management systems
- Logistics and supply chain management
- Machine learning algorithms, such as support vector machines

Second-order Cone Definition

Definition (Second-order Cone)

A second-order cone \mathcal{L}^k is defined as

$$\{(x_0, \widetilde{\boldsymbol{x}}), \widetilde{\boldsymbol{x}} \in \mathbb{R}^k : \|\widetilde{\boldsymbol{x}}\|_2 \leq x_0\}.$$

Euclidean norm: $||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$.

Figure: The second-order cone \mathcal{L}^2 is equivalent to the inequality $\sqrt{x^2 + y^2} \le z$.

Second-order Cone Program Definition

- **Objective function:** Linear function $c^{\top}x$
- **Constraint function:** Intersection of an affine set Ax = b and the Cartesian product \mathcal{L} of second-order cones.

Definition (Second-order Cone Program)

Given the constraint matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, two vectors $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$, and \mathbf{r} second-order cones $\mathcal{L}_1, \ldots, \mathcal{L}_r$. The optimization problem can be expressed as:

min
$$\boldsymbol{c}^{\top}\boldsymbol{x}$$
 subject to $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x}_i \in \mathcal{L}_i$ for all $i \in [r],$ (1)

where \boldsymbol{x} is the concatenation of \boldsymbol{x}_i lying inside the domain $\mathcal{L} \stackrel{\text{def}}{=} \mathcal{L}_1 \times \cdots \times \mathcal{L}_r$ and each $\mathcal{L}_i \in \mathbb{R}^{n_i}$ is a second-order cone.

Karmarkar	Linear program	1984	$O(n^{3.5})$
Nesterov,	Second-order cone	1994	$O(n^{\omega+0.5})$
Nemirovski	program	1994	$O(n^{\prime})$
Lee, Song, Zhang	Constant		
	dimension convex	2019	$O(n^{\omega})$
	program		
Cohen, Lee,	Linear program	2021	$O(n^{\omega})$
Song		2021	O(n)
Gu, Song,	Quadratic	2023	$O(n^{\omega})$
Zhang	program		
Our result	Second-order	2023	$O(n^{\omega})$
	cone program		

Developed a second-order cone programming algorithm that runs in matrix multiplication time.

- Applied approximation techniques to reduce the runtime of each iteration.
- Developed a novel approach to decompose large cone constraints into smaller ones.
- Utilized self-concordance properties to prove that the algorithm converges in matrix multiplication time.

Interior Point Methods: Duality

Definition

Given an SOCP of the form

$$\min_{\mathbf{A}\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\in\mathcal{L}}\boldsymbol{c}^{\top}\boldsymbol{x}$$

the dual of this SOCP is the new SOCP

$$\max_{\mathbf{A}^{ op} \mathbf{y}+\mathbf{s}=\mathbf{c},\mathbf{s}\in\mathcal{L}} \mathbf{b}^{ op} \mathbf{y}.$$

We call the original SOCP a primal SOCP.

Theorem (Complementary Slackness)

Any feasible x and s are optimal if and only if $\mathbf{x}^{\top}\mathbf{s} = 0$.

Interior Point Methods: Central Path

In the IPM, we start with a feasible solution pair (\mathbf{x}, \mathbf{s}) and follow a *central path* to the solution. While the duality gap $\mathbf{x}^{\top}\mathbf{s} > \epsilon$, where ϵ is the error we tolerate, perform the following steps:

- Compute the next point $(\mathbf{x} + \delta_x, \mathbf{s} + \delta_s)$ to decrease the duality gap.
- Update (x, s) to the new point.

The interior point method follows the central path $\mathbf{x}(t)$ which starts at some interior point $(t \gg 0)$ to the optimal solution (t = 0):

where $\phi_i : \mathcal{L}_i \to \mathbb{R}$ are *barrier functions*: they increase rapidly near the border of each second-order cone.

Interior Point Methods: Approximate Solution

Because it is costly to compute (x, s) exactly at each iteration, we use an approximate solution (\bar{x}, \bar{s}) that remains within a small neighborhood of the central path.

To ensure (\bar{x}, \bar{s}) remains close to (x, s), we update certain blocks of (\bar{x}, \bar{s}) at each step.

Michelle Wei

Interior Point Methods: Optimality Conditions

Theorem (Karush–Kuhn–Tucker condition)

The optimal condition of the path satisfies

$$\frac{1}{t}\boldsymbol{s} + \nabla \phi(\boldsymbol{x}) = 0.$$

We denote $\mu = \mathbf{s}/t + \nabla \phi(\mathbf{x})$, which serves as a measure of proximity to the central path.

At each step, we update t by some multiplicative factor, then update x and s by solving the following system (*Newton System*):

$$\begin{pmatrix} \nabla^2 \phi(\overline{\mathbf{x}}) & \mathbf{I}/\overline{t} & \mathbf{0} \\ \mathbf{A} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} & \mathbf{A}^\top \end{pmatrix} \begin{pmatrix} \delta_{\mathbf{x}} \\ \delta_{\mathbf{s}} \\ \delta_{\mathbf{y}} \end{pmatrix} = \begin{pmatrix} \delta_{\mu} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$

Cone Splitting

Even without recomputing from scratch at each iteration, updates for high-dimension blocks are still expensive! It takes n_i^{ω} time just to update one block of dimension n_i .

Instead, we can transform higher dimension cones into the intersection of smaller cones and an affine space:

We can convert back from new SOCP to old SOCP in O(n) time.

Final Algorithm for SOCP

- Cone-splitting
- Find initial feasible solution (x, s)
- While $t > \epsilon$,
 - Update t to $t\left(1-\frac{1}{\sqrt{r}}\right)$.
 - Calculate δ_x and δ_s .
 - Update \boldsymbol{x} to $\boldsymbol{x} + \delta_{\boldsymbol{x}}$ and \boldsymbol{s} to $\boldsymbol{s} + \delta_{\boldsymbol{s}}$.
 - Update \bar{x} , \bar{s} as needed.
- Using the solution to the modified SOCP, reconstruct the solution to the original SOCP.

This algorithm solves a second-order cone program in $O(n^{\omega} + n^2 r^{1/6} + n^{2.5-\alpha/2} \log(1/\epsilon))$ time.

I would like to thank

- My mentor Guanghao Ye for his guidance and encouragement throughout this project;
- Dr. Etingof, Dr. Gerovitch, Dr. Khovanova, and all the MIT PRIMES-USA organizers for making this math research opportunity possible.

References

- Michael B. Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix multiplication time. *J. ACM*, 68(1):3:1–3:39, 2021.
- Yuzhou Gu, Zhao Song, and Lichen Zhang. A nearly-linear time algorithm for struc- tured support vector machines. *arXiv preprint arXiv:2307.07735*, 2023.
- A new polynomial-time algorithm for linear programming. *Combinatorica*, 4(4):373–395, dec 1984.
- Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix multiplication time. In Alina Beygelzimer and Daniel Hsu, editors, *Conference on Learning Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA*, volume 99 of *Proceedings of Machine Learning Research*, pages 2140–2157. PMLR, 2019.
- Yurii Nesterov and Arkadii Nemirovskii. *Interior-Point Polynomial Algorithms in Convex Programming*. Society for Industrial and Applied Mathematics, 1994.