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1 Abstract

Huntington’s Disease (HD) is an inherited neurodegenerative disease caused by alleles with 36 or

more repeats of the trinucleotide sequence CAG in the huntingtin (HTT ) gene. A person with

HD inherits an allele with a certain CAG length (> 35) at birth, but somatic expansion within

the brain is known to occur throughout their lifetime, resulting in a situation in which individual

cells have longer and highly variable numbers of CAG repeats. Somatic expansion is increasingly

thought to be a driver of disease onset, as age-at-onset associates with modifier alleles in

DNA-repair genes that regulate somatic expansion. Thus, a better understanding of the

mechanisms behind CAG repeat expansion could be crucial in revealing novel therapeutic targets.

In this study, we adapted a stochastic birth-death model previously used for a different

repeat-expansion disease (Myotonic Dystrophy Type 1, or DM1) to model CAG repeat expansion

in HD. We made use of a new kind of biological data, in which CAG length has been measured

precisely in many individual neurons of the most vulnerable type from post mortem brain

samples. We found that single-process models consisting of only one length threshold and rate —

models that succeeded in modeling DM1 — were unable to explain all features of repeat

expansion data observed in HD patients. Effectively fitting the data required models consisting of

two separate processes, suggesting that there may be two distinct biological mechanisms

underlying CAG repeat expansion in HD. These processes appear to have differing rates and CAG

length thresholds: one at roughly 36 CAGs — a threshold for instability — and another at 70

CAGs, which we hypothesize is a threshold for accelerated expansion. This model deepens our

understanding of disease progression and can inform the design of clinical trials for new therapies

that target the somatic expansion process.



2 Background

2.1 Huntington’s Disease

Huntington’s Disease (HD) is one of many diseases known to be caused by inherited alleles with

expanded trinucleotide repeats (others include Myotonic Dystrophy Type 1 and Fragile X

Syndrome) [1]. HD specifically is caused by inherited alleles with 36 or more CAG repeats in exon

1 of the huntingtin (HTT ) gene [2]. The disease causes the progressive death of neurons within

the brain and is characterized by uncontrolled movements, dementia, and other psychological

disturbances. A person only needs to inherit one allele with 36 or more CAG repeats from either

parent to contract the disease, and higher CAG lengths above that threshold are associated with

earlier age of onset [3]. The average age of onset for HD patients is around 40 years, but for

patients inheriting longer alleles it may occur as early as in their juvenile years [4].

Although all cells will start with the same inherited CAG length, patients with the disease exhibit

somatic expansion of CAG repeats within certain cell types, in which the number of repeats

changes in individual cells over time due to mutations [2]. The instability of repeats generally

favors expansions, or increases in CAG repeat length, though contractions may also occur that

decrease CAG length [5]. Somatic expansion occurs mostly within neurons, and most abundantly

in the Spiny Projection Neurons (SPNs, also called Medium Spiny Neurons or MSNs), and can

result in some SPNs reaching extremely high CAG lengths upwards of one thousand [6]. Because

neurons are long lived and typically do not regenerate, these changes in CAG length persist in

individual neurons throughout the patient’s lifetime. These expanded CAG repeats are thought

to be toxic and cause cell death, and thus drive disease pathogenesis [7]. This is consistent with

the fact the human striatum — whose neuronal population mostly consists of SPNs — is observed

to have high amounts of neuronal cell death for patients suffering from HD [8].

2.2 Biology Behind CAG Repeat Expansion

The number of CAG repeats within the DNA sequence of a cell can change over time through

mutations. The mechanism behind these mutations is thought to occur through two steps. The

first step is the formation of hairpin structures, which are loops of extra DNA that extrude

outwards of the main DNA strands [9]. These hairpins form in the repeated CAG segment of the

DNA. The second step is when DNA mismatch repair (MMR), which is a biological mechanism

that is normally beneficial in fixing mutations, attempts to resolve these hairpin structures [10].

Depending on how they are resolved, the hairpin structure can either be incorporated or removed

altogether from the DNA, leading to an increase or decrease in the number of CAG repeats. An

increase in CAG length is called an expansion and a decrease is called a contraction.

One way for the DNA hairpin structures to form is through DNA polymerase slippage [11]. Since

the brain has high metabolic levels, oxidation occurs frequently in neurons resulting in DNA
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damage. Whenever there is damage, DNA damage repair mechanisms such as base excision repair

(BER) will cut the damaged segment of the DNA, and DNA polymerase will re-synthesize cut

strand based on the other healthy strand [10]. However, the DNA polymerase can slip off during

synthesis, and because of the repetitive structure of the CAG repeats, the slipped off DNA strand

can attach to the other strand at the wrong spot, shifted over by some number of CAG repeats.

This leaves a hairpin extruding out of the DNA. When a new polymerase attaches, it does not

recognize the hairpin and will re-synthesize the rest of the DNA strand, leaving the extra loop as

a part of the DNA.

In the second step, the DNA mismatch repair (MMR) system will attempt to resolve the hairpins

formed. DNA mismatch repair is a biological mechanism that corrects errors and damage within

DNA sequences, and generally lowers the rate of mutations. However, in the case of somatic

expansion, it may actually worsen the situation by incorrectly repairing these hairpin structures

[10]. For example, MMR may cut the strand opposite to the extrusion, pull the hairpin straight,

then re-synthesize the original cut strand. In this scenario, the hairpin sequence becomes

incorporated into the DNA, resulting in an expansion by the length of the hairpin. Similarly,

MMR may cut around the hairpin, remove it, then re-synthesize. Depending on which strand the

hairpin was formed (either the template strand or repaired strand), this may result in a correct fix

(no change in CAG length) or result in a contraction [10].

Previous studies have shown that genes involved in the DNA MMR system such as MSH3 are

modifier genes for HD and associate with age of onset [12], providing evidence that DNA MMR

and somatic expansion drive disease progression.

2.3 Data Used In This Study

For this study, we used a new type of biological data collected by the McCarroll Lab at Harvard

Medical School in collaboration with the Harvard Brain Tissue Resource Center at the McLean

Hospital. Specifically, the lab devised a method to obtain CAG measurements at a single cell

resolution simultaneously with their RNA expression levels, in tissue collected from post-mortem

brain samples of HD patients. A transcriptome library is generated for each donor, and by

barcoding individual cells, allows for accurate CAG length measurements and determining which

cell type each measurement was from through its RNA expression data. This data revealed that

somatic expansion was highly cell type specific; it occurred heavily in SPNs but not at all in many

other neuronal cell types. The cell type specificity in the data was therefore crucial in allowing us

to model somatic expansion in only the SPNs without having the data obfuscated by cell types

that did not exhibit expansion. The lab was also able to estimate the fraction of cell death of

SPNs by comparing the abundance of SPNs in each HD patient to the abundance seen in controls

without the disease. This data was helpful in creating an accurate model accounting for cell death.

To our knowledge, cell type specific CAG length measurements and SPN cell death measurements
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Figure 1: The plots show the CAG repeat length data of SPNs collected from post-mortem brain samples of 6 HD

patients. (a) The CAG length distributions for each donor. (b) The empirical cumulative distribution functions

(eCDFs) of the CAG lengths for each donor overlaid.

were not previously available, and thus provided us with opportunities for novel statistical models.

For this analysis, we will focus on six HD patients and the CAG length distributions of their

SPNs. These patients specifically were chosen because they had high amounts of data and

exhibited a noticeable degree of somatic expansion. Shown in Figure 1a and Figure 1b are the

CAG length data of SPNs collected from these donors. Table 1 lists each donor’s age, inherited

CAG length, and fraction of SPN cell death.

2.4 Transcriptional Dysregulation in SPNs

From this data, the lab has also found evidence of cells beginning to exhibit transcriptional

dysregulation in their RNA expression data after exceeding 180 CAGs, whereas there was no

significant correlation between gene expression and CAG length before that threshold. This

evidence suggests that neuronal cell death due to disease pathogenesis mostly occurs in cells with

CAG lengths above 180, as transcriptional dysregulation interferes with the production of

essential proteins and is likely an early step on the path towards cell death. Along with the data

on the fraction of SPN cell death collected for each donor, these later allow us to account for cell

death in our models for somatic expansion.
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Donor # Age (A) Inherited CAG Length (I) Cell Death Fraction

1 61 42 0.753

2 81 40 0.433

3 51 43 0.734

4 37 43 0.129

5 58 42 0.727

6 48 42 0.778

Table 1: The data used in this study was collected on 6 donors who had HD. Listed in the table for each donor are

the age at which they died, the CAG length they inherited at birth, and the fraction of cell death measured for their

SPNs.

3 Research Goals

The goal of this research was to create a statistical model for somatic CAG expansion that could

generate CAG length distributions similar to the data collected from HD patients. Through these

models, we hope to deepen our understanding of somatic expansion and its relationship to

Huntington’s Disease pathogenesis. We hope to gain insight into the biological mechanism and

properties behind somatic expansion, which include:

1. The extent of the bias towards expansions over contractions.

2. How the rate of somatic expansion changes over time.

3. The relationship between somatic expansion and symptom onset.

4. The variability in somatic expansion among individual HD patients.

A deeper understanding of these properties of somatic expansion is important because it could

inform the design of therapeutics that target the somatic expansion process, as well as inform the

design of clinical trials.

4 Models For Somatic CAG Expansion

To model CAG repeat expansions, we adapted a previous mathematical model that was applied

to another triplet repeat expansion disease, DM1 [13]. The DM1 model differs from our work in

HD in that they modeled somatic expansion in blood cells, which likely exhibits different behavior

than the neurons we modeled in HD. We similarly treat somatic expansion as a stochastic process

consisting of both expansions and contractions, which happen at a rate that increases with each

CAG length above a certain threshold, and do not happen at all below that threshold. Since we

were modeling HD, we used a threshold of 36 CAGs where mutations only occur at or above that

threshold, as we know people inheriting 36 or more repeats contract the disease, and we have seen

empirically that shorter alleles are stable. We adopted a statistical model that involved

simulating each cell through computation, as opposed to the DM1 model which mathematically
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calculated the probability distributions. We chose statistical models as they were more flexible

and allowed us to model more complex processes without requiring a closed form solution.

4.1 Base Model

The models we implemented simulate each individual cell’s CAG length over the patient’s

lifetime. By simulating many cells independently, we can create a distribution of CAG lengths

that can then be fitted to data from patients. To simulate an individual cell, the model assumes

mutations will occur randomly at a certain rate. Since the rate of mutations is expected to

increase for longer CAG repeats due to there being more sections of DNA subject to mutation,

the model calculates the mutation rate as a function of CAG length. In the base model, or

simplest model we implemented, this rate increased linearly for each CAG above the threshold.

Then, each time a mutation occurs, there is a certain probability that it’s an expansion, and

otherwise a contraction. These mutations are simulated until the age of death is reached and the

final CAG length is used. The base model fits two parameters for each donor:

1. r = rate parameter (used to calculate the mutation rate as a function of CAG length).

2. p = the probability a mutation is an expansion (otherwise a contraction).

We also fix two donor-specific parameters: A = age at death and I = inherited allele length of the

donor we are trying to model.

Algorithm 1 describes the process for simulating an individual cells’ CAG length over the

patient’s lifetime. At each step, Tnext represents the time in years before the next mutation,

which is drawn from a random exponential distribution with rate r · (X − 35). The rate is

calculated in this way so that for each CAG repeat above 35 CAGs (the threshold above which

somatic expansion occurs), there is an increased rate of mutation. Each mutation then has a

probability p of increasing by 1 CAG and otherwise decreasing by 1. We then continue this

process until the age of death is reached. Thus, each cell is modeled as a stochastic process

consisting of both increases and decreases in CAG length.

We also tried models that changed by a variable number CAG repeats each time rather than

always changing by one repeat. However, we found that models only changing by one repeat were

often able to behave in a similar way to those other models. The previous DM1 model [13] also

only considered single CAG repeats, as there has been biological evidence that mutations of single

repeats are the most common in repetitive nucleotide sequences [14]. As a result, we decided to

use models that change by one repeat each mutation for this study on HD.

4.2 Objective Function

By using the model described, we can simulate many cells to create a list M of CAG lengths,

where Mi stores the CAG length of the i-th cell by the time of the patient’s death. Similarly, let
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Algorithm 1 Base Model

function SimulateCellBaseModel(r, p, A, I)

T ← 0 ▷ T stores the current age in years

X ← I ▷ X stores the current CAG length

while T < A do ▷ repeat process until the age of death is reached

if X ≤ 35 then ▷ assume somatic expansion not occur 35 CAGs or below

break

end if

Tnext ∼ Exp(r · (X − 35)) ▷ years until next mutation, drawn from an exponential distribution

T ← T + Tnext

u ∼ U(0, 1) ▷ draw from a uniform distribution

if u < p then ▷ with probability p

X ← X + 1 ▷ expansion

else

X ← X − 1 ▷ contraction

end if

end while

return X ▷ return CAG length at death

end function

the actual CAG distribution from the data of this patient be D, where Di stores the CAG length

of the i-th observation. To quantify how well the model fits the data, we decided to use the

Kolmogorov-Smirnov (KS) test statistic. The KS test statistic is calculated as the largest

difference between the empirical cumulative distribution functions of two discrete distributions.

The statistic ranges between 0 and 1, with a lower value indicating a better fit. Formally, let

FM (x) and FD(x) be the empirical cumulative distribution functions of M and D respectively.

Then, the objective function is calculated as follows:

Objective Function Score = sup
x
(|FM (x)− FD(x)|),

where sup is the supremum function.

4.3 Fitting the Base Model

Our goal is to find the parameters r and p that generate a CAG length distribution with the least

KS test statistic in comparison to the data. To do so, we performed a grid search, which consisted

of iterating through an exhaustive list of parameter sets (r, p). Specifically, we iterated through

values of r between 0 and 1 and values of p between 0.5 and 1. For each parameter set, we ran the

model to generate CAG lengths for 1, 000 cells, and then calculated the KS test statistic between
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Figure 2: (a) A visualization of the grid search performed for one of the donors (Donor #5), with the two parameters

of the model on each axis. Each point represents one parameter pair (r, p) and is colored by the KS test statistic

between the distribution generated from the model and the data. The optimum parameters generating the best fit

were r = 0.615 and p = 0.135, which are shown as the red X in the plot. (b) The grid search shown in (a) was repeated

to find the optimum parameters for all six donors separately. The CAG distributions generated by the model using

those optimum parameters (shown in red) are overlaid with the CAG distributions from the data (shown in black).

The top six plots show the histograms and the bottom six plots show the empirical cumulative distribution functions

(eCDFs) of the CAG lengths.

those generated lengths the CAG length data. This grid search is visualized in Figure 2a. We

then ran the grid search separately for each of the six donors to determine the parameters that

resulted in the best fit.

Because the model relies on a stochastic process, running the model multiple times can result in

varying CAG length distributions. To mitigate this effect, we hoped to simulate a higher number

of cells for each parameter set. To keep computation time reasonable while simulating more cells,

we found the best fitting parameters in two passes. The initial pass is the grid search we detailed

previously, where we only simulated 1, 000 cells for each set of parameters. In the second pass, we

took the 5, 000 parameter sets with lowest KS scores from the first grid search and then simulated

them again but with 100, 000 cells this time. In this manner, we were able to simulate many more

cells for the sets of parameters that were close to being the optimum, and helped reduce

computation time. This was applied to each of the six donors, and the optimum parameters for

each donor was determined from the second pass. The CAG distributions generated by those best

parameters are overlaid with the data they were fit to in Figure 2b.
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From Figure 2b, we see that the model is generally able to fit the shape of the CAG distribution

in the data for low CAG values. However, there is a consistent trend in the data of a long tail of

CAG values starting at around 70 CAGs that the model fails to capture. This observation, which

is consistent across all six donors, suggests that the base model is likely not adequate to explain

the underlying biological mechanism.

4.4 Accounting for Cell Death

The previous model did not account for cell death, which plays a major role in the HD and should

therefore be something we account for in our models. From Table 1, we see that the fraction of

SPN cell death by the time of an HD patients death ranged from 13% to as high as 78% in these

donors. Because cells that have died will on average have much higher CAG lengths, the data

that we observe is not representative of the true CAG length distribution. As mentioned

previously, the McCarroll Lab has found evidence that cells that have died due to disease

pathogenesis are likely above 180 CAGs. As a result, high CAG lengths are almost definitely

underrepresented in our data, as one could imagine there being a large fraction of cells that have

reached 180+ CAGs, but because they have died are not observed in the data.

Suppose the fraction of SPN cell death in a donor was Fdeath, and that we observed N SPNs in

the data. Then we can say that there are roughly Ndead = N · Fdeath
1−Fdeath

cells that have died and

thus not observed. If we assume that all of the dead cells have above 180 CAGs, then our

previous model is not even close to being accurate. Since Fdeath is often 0.7 or higher, the model

should then get more than 70% of the cells above that 180 CAG threshold to be consistent with

cell death.

To account for these cells that have died, we modified the objective function to consist of 2 parts:

the fit of the CAG distributions with cells strictly less than 180 CAGs in the model and data, and

the difference in fraction of cells ≥ 180 in the model and data (after including dead cells). We

decided to use this approach as opposed to adding parameters in the model to simulate cell death

because we wanted to minimize assumptions about the CAG lengths of the dead cells. The only

assumption we are making is that a vast majority of the cells that have died are above 180 CAGs.

More formally, let

1. D180 = list of CAG lengths strictly less than 180 CAGs from the data.

2. FD180(x) = empirical cumulative distribution function of D180.

3. M180 = list of CAG lengths strictly less than 180 CAGs generated from the model.

4. FM180(x) = empirical cumulative distribution function of M180.

5. fD = fraction of cells above 180 CAGs in the data (including unobserved dead cells). It is

calculated by adding Ndead to the count of observed cells above 180 CAGs, and then
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dividing by N +Ndead.

6. fM = fraction of cells above 180 CAGs in the model.

Then, the objective function quantifying how well the model fits the data is as follows:

Objective Function Score = sup
x
(|FM180(x)− FD180(x)|) ·

1

2
+ |fD − fM | ·

1

2

We reran the base model using this improved objective function. Shown in Figure 3a are the best

fits generated by the base model accounting for cell death, and Table 2 shows the fraction of cells

above 180 CAGs generated by the base model in comparison to the data. We can see that the

base model now completely fails to fit the data. In an attempt to get enough cells past 180 CAGs,

the model must turn up the rate parameter very high. But due to its lack of flexibility, it ends up

compromising the shape of the distribution. The model CAG distributions look almost like

uniform distributions, with the exception of a spike at 35 CAGs, which is a result of stopping

when a cell goes below 36 CAGs. Donor #4 is the only donor that avoided this issue, as the

fraction of cell death was lower and the model did not have to increase the rate by much. We saw

that without cell death, the base model did not fit well, and after including cell death, it fits even

worse, further indicating that the base model is not an accurate model for somatic expansion.

4.5 Power Model

We tried multiple other models, some of which calculated the number of CAG repeats to change

by as a function of repeat length rather than always changing by one repeat, and others that

calculated the mutation rate as some non-linear function of CAG length. Out of these models, we

found a model calculating the mutation rate as a power function of CAG length to be the most

flexible while having relatively few parameters. We therefore decided to focus on this power

model over the others. The model reflects the fact that power-law relations are often found in

natural systems.

In the base model, the mutation rate was calculated by r · (X − 35), which indicates a linear

relationship between the mutation rate and the number of CAGs above the threshold of 35. For

the power model, we calculate the mutation rate as r · (X − 35)k. This adds an extra parameter k,

which acts as the exponent and results in the mutation rate being a power function of the number

of CAG repeats above 35. Otherwise, the rest of the model remains the same.

We then performed a grid search on triplets of parameters (r, p, k), and found the optimum

parameters for each of the six donors using two passes as we did with the base model.

From Figure 3b, we can see that the power model fits the data more closely than the base model.

The model generally found values of k (the exponent parameter) above two to fit best, as that

allows a faster increase in rate that helps get more cells into that longer CAG range while
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Figure 3: The CAG distributions generated by the models accounting for cell death overlaid with the patient data

they were fit to. Only CAG lengths up to 180 CAGs were plotted because we suspect most cells that have died are

above this threshold. The models were fit on the CAG lengths up to 180 CAGs, as well as the fraction of cells above

that threshold (including the estimated fraction of dead cells in the data). See Table 2 for information on cell death

estimation. (a) The model fits for the base model. The base model does not fit well, resulting in almost a uniform

distribution with a spike at 35 CAGs for the cells that went below the threshold. (b) The model fits for the power

model, which fits better than the base model but still consistently fails to capture the shape near 70 CAGs. (c) The

model fits for the two-process model. The two-process model fits well and is able to capture features of the data the

other models struggled to.
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Donor # Data Base Model Power Model Two-Process Model

1 0.778 0.779 0.785 0.777

2 0.471 0.476 0.474 0.465

3 0.749 0.755 0.743 0.744

4 0.187 0.00 0.186 0.186

5 0.749 0.759 0.750 0.746

6 0.797 0.790 0.798 0.795

Table 2: Comparison of the fraction of cells above 180 CAGs in the observed data and in the three models. The data

column lists for each donor the fraction of cells above 180 CAGs, which consists of both the observed cells and dead

cells assumed to have CAG lengths above that threshold. The fraction of cells above 180 CAGs is also shown for the

distributions generated by the three models (Base Model, Power Model, Two-Process Model). All of the models were

generally successful in getting a similar amount of cells past 180 CAGs consistent with the data.

maintaining the distribution shape of lower CAG lengths. However, the model still does not

accurately capture the CAG lengths at around 70 CAGs. In the data, we see a sudden drop in

frequency at roughly 70 CAGs for all donors, but in the model we only see a gradual drop in

frequency at the threshold. This is reflected in the eCDFs for all donors, as the model eCDFs are

consistently below the data eCDFs at around 70 CAGs. Another discrepancy is that the peak of

the histograms in the power model are consistently to the left of the peaks in the data. These

consistent inaccuracies suggest that the power model may still not accurately represent the

somatic expansion process.

4.6 Theory of Two Biological Processes

The previous models all fail to explain certain features in observed data, specifically the long tail

of CAG lengths that seems to suddenly start at around 70 CAGs (see Figure 1a in Figure 1b).

Specifically in Figure 1b, there is a sharp turn that happens in the eCDFs for all donors at around

70 CAGs, after which the cumulative curves begin to flatten out to create a long tail. This feature

remains surprisingly consistent among donors despite them having quite a large variation in terms

of age. This feature of the data suggests that there may actually be two biological processes

driving CAG expansion. One of the processes would occur as expected, with a threshold of 36

CAGs and that causes the initial somatic instability. But the data suggests that there could be a

second process with a threshold around 70 CAGs that causes expansions at a much faster rate.

Such a mechanism could explain why there is such a distinct tail of CAG lengths starting at that

point for all donors.

Though the biological mechanisms behind expansion are poorly understood, there is evidence

supporting a two-process model in previous literature. Hairpins can form from polymerase

slippage, and also whenever there is strand separation and re-annealing. Polymerase slippage

generally results in smaller hairpins while strand separation/re-annealing can result in very large

hairpins. Based on the two-process model, polymerase slippage could constitute the first process
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with a threshold of 36 CAGs, while strand separation and re-annealing would constitute the

second process with a threshold of roughly 70 CAGs. Further, there has been evidence suggesting

an increase in helical tension at 64 CAGs not seen at 54 CAGs [15], which could boost the

frequency of hairpin formations around this second process threshold we hypothesize.

4.7 Two-Process Model

These findings inspired us to try a model that consists of two processes. Because the mechanism

for resolving hairpins is similar for both mechanisms (through DNA mismatch repair complexes),

we kept the same probability of expansion for both processes. We instead added parameters for

the rate and threshold for the second process. The model parameters are as follows:

1. r1 = rate parameter for process 1

2. r2 = rate parameter for process 2

3. p = probability of expansion for both processes

4. t = threshold for process 2

Process 2 is modeled in the same way as process 1, but has a differing rate parameter and an

activation threshold of t CAGs rather than the fixed activation threshold of 35 CAGs set for

process 1. These processes are assumed to occur independently. For this model we did not

calculate mutation rate as a power function of excess CAG length; each process resembles the

original base model. The algorithm for this model is shown in Algorithm 2.

In Algorithm 2, T1 and T2 refer to the time from the next mutation event from process 1 and 2

respectively. The minimum between these times is when the next mutation event will happen,

after which it will be an expansion with probability p and contraction otherwise.

We performed a grid search on the set of parameters, now quadruplets of (r1, r2, p, t), and found

the best fitting parameters. The fits with lowest objective function scores are shown in Figure 3c.

From Figure 3c, we see that the two-process model is able to match features of the data that the

power and base model could not capture. It is able to generate that long tail of CAG lengths

through the second process, as well as match closely with the data in the histogram, where the

peaks match. For a more quantitative analysis on the fits, Figure 4 shows the objective function

scores for each model over all donors. We see that the power model consistently outperforms the

base model, and that the two-process model consistently outperforms both other models for all

donors. The high performance of the two-process model is consistent with our hypothesis that

there may be two biological processes underlying somatic expansion with differing rates and

thresholds. However, this increased fit could also be affected by the fact that the two-process

model has the most parameters out of all three models: four parameters as opposed to the power

12



Algorithm 2 Two-Process Model

function SimulateCellTwoProcessModel(r1, r2, p, t, A, I)

T ← 0 ▷ T stores the current age in years

X ← I ▷ X stores the current CAG length

while T < A do ▷ repeat process until the age of death is reached

if X ≤ 35 then ▷ assume somatic expansion not occur 35 CAGs or below

break

end if

T1 ∼ Exp(r1 · (X − 35)) ▷ years until a mutation from process 1

T2 ∼ Exp(r2 ·max(X − t, 0)) ▷ years until a mutation from process 2

T ← T +min(T1, T2) ▷ increment time to when the first mutation happens

u ∼ U(0, 1)

if u < p then ▷ with probability p

X ← X + 1 ▷ expansion

else

X ← X − 1 ▷ contraction

end if

end while

return X ▷ return CAG length at death

end function

model which has three parameters and the base model which has two parameters. This is one of

the current limitations of our model. In the future, we plan on moving the model into a likelihood

based framework that would allow more statistically grounded model comparisons through the

Akaike Information Criterion (AIC).

4.8 Computational Performance

Running the grid search to fit the models was computationally intensive, as we wanted to search a

wide range and fine grained set of parameters. For each set of parameters, we also wanted to

simulate as many cells as possible to mitigate the effects of the randomness in the stochastic

process. In addition to running multiple models for six donors, the computational costs became

very large.

Originally, the models were coded in R, but we later moved all of the computationally heavy parts

(the grid search and running the model) into Java, which gave nearly a 30x speed boost. We then

used R to create the plots from the outputs generated by the model in Java. To further speed up

computation, we parallelized the algorithms and utilized the high-performance compute cluster at

the Broad Institute. When running each grid search, we broke the parameters sets to be
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Figure 4: The lowest objective function for each model for each donor. The power model consistently scores better

than the base model, and the two-process model consistently fits better than both the base and power model for all

donors.

simulated into roughly 50 jobs and submitted them simultaneously to the computer farm. These

combined efforts were able to speed up the computation. In the end, the power and two-process

models took roughly 3− 4 hours to run, whereas the base model took less than 1 hour.

5 Applications of the Model

With the two-process model, which we believe is an accurate model for somatic expansion, we can

now analyze the model behavior to provide insight into the somatic expansion process. The

advantage of the model is that it provides a view of the CAG length distribution at any point in

time and shows the dynamics of the somatic expansion process, whereas the laboratory data can

only provide information at the time of the patient’s death. The model can help us better

understand the variability of somatic expansion across donors, the extent of bias towards

expansions over contractions, the rate of somatic expansion over time, and when age of onset

occurs. These insights could help enable therapeutics that target somatic expansion, and could

also inform the design of clinical trials.

5.1 Parameter Variability Across Donors

We can use the model to analyze parameter differences between donors to gain insight into how

somatic expansion may vary between people. We start by looking at the parameter values that

generated the best fits for the two-process models in all donors. Shown in Figure 5a are the four

different parameters: r1, r2, p, t. The middle of each vertical bar gives the parameter value that

resulted in the best fit, whereas the upper and lower points of each bar give the highest and

lowest parameter values that generated a fit with an objective function score within 0.01 of the
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optimum. We see that the r1 parameter was generally much lower than the r2 parameter,

indicating that the first process is slower. We also see that the p parameter is very stable,

hovering around 0.68 for all donors, indicating that somatic instability consists of more

expansions, but also a relatively high amount of contractions. The t parameter is also relatively

consistent, generally varying around 70 CAGs, which is consistent with our original hypothesis

that there may be a second process occurring at roughly 70 CAGs. This variability within

parameters may reflect biological variation between donors; it’s possible that donors with

favorable genetic modifiers may have a lower r1, for example. On the other hand, the consistency

of the p parameter at around 0.68 may indicate that the degree of bias towards expansion is

universal among HD patients. In the future, we hope to pair these parameters generated by the

model with other information on the donors such as if they have genetic modifiers, to analyze if

the parameter values may reflect those individual differences.

5.2 Dynamics of Somatic Expansion

Another piece of important information we can attempt to gather from the model is the speed at

which cells expand in CAG length. From our analyses, the power model and two-process model fit

far better than the base model, indicating that the rate of CAG expansion grows much faster

than a linear process. To get a better sense of how many years it takes cells to increase through

certain CAG length ranges, we analyzed individual cells from the best fitting two-process models

on all donors. Figure 5b shows the average time in years it took cells to cross certain CAG ranges.

We see that as the CAG lengths increase, the rate of somatic expansion increases at a superlinear

rate. Whereas it took on average 38.5 years (averaged over all donors) for cells to go from their

inherited CAG length to 70 CAGs, it only took on average 6.02 years to cross a larger range of 70

to 120 CAGs, and 2.38 years for cells to cross an even larger CAG range of 180 to 500. If we

assume that a cell that has reached 180 CAGs has started to exhibit transcriptional

dysregulation, and that a cell that has reached a length of 500+ CAGs is almost certainly dead,

then the model indicates that it only takes around 2 years for a cell that has started to exhibit

transcriptional dysregulation to die. This gives us more hope in therapeutics that target somatic

expansion, as it indicates the possibility of slowing or stopping somatic expansion even in

advanced stages of disease progression. At any point, only a small fraction of cells will be in a

CAG length range high enough that might result in cell death to occur soon; so as long as we can

slow down the somatic expansion for the cells in lower ranges (i.e. 40 to 70 CAGs) before they

reach the hypothesized second process where expansion is much faster, the therapeutic could

potentially protect a large majority of the surviving SPNs.

These findings of the model are also consistent with a previous study comparing young adults

who had HD but had not reached age of symptom onset (preHD) with controls who did not have

HD [16]. The study found that there was no significant evidence of cognitive or psychiatric
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Figure 5: Inferences based on the two-process model. (a) The middle dot on each vertical bar shows the parameters

that resulted in the best fit. The upper and lower points of each bar give the highest and lowest parameter values

that generated a fit with an objective function score within 0.01 of the optimum. (b) Average time it took for a cell

to cross each of the CAG ranges between donors. The first range Inh-70 shows the average time it took for a cell to

go from its inherited length to 70 CAGs. (c) Curves show the fraction of cells above 180 CAGs over time, based on

the CAG lengths generated by the model. Each X marks the actual age of neurological onset for the donor and the

fraction of cells above 180 at that point based on the model. Age of onset data was only available for three of the six

donors. The blue line shows the fraction that best predicts age of onset which was found in part (d). (d) Predicting

age of onset by the fraction of cells above 180 CAGs. A fraction of 0.28 resulted in the lowest root mean squared

error of 7.39 years when predicting age of onset.

impairment for the preHD participants, and that there were no differences in brain imaging

measurements other than slightly smaller pumaten volumes for preHD patients. Our model is

consistent with these results as it suggests that the rate of somatic expansion is very slow in the

early stages of disease and that few if any cells have reached a toxic CAG length at that stage.

The model indicates that preHD participants who had not reached the age of symptom onset

would have relatively little somatic expansion, which could explain why there was no significant

evidence of disease phenotypes.
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5.3 Cell Death and Age of Onset

We can also use the model to attempt to relate somatic CAG expansion with the timing of

symptom onset. Because we suspect the onset of symptoms generally begins when a certain

amount of the SPNs have died, we would like to predict what that fraction of cell death is. In our

model, since we assume that the fraction of cells above 180 CAGs is a proxy for cell-biological

pathology and death, we can attempt to predict age of onset based on when the fraction of cells

above 180 CAGs first reaches some threshold. Out of the six donors used in this study, we have

data on the age of neurological symptom onset for three of the donors.

Figure 5c shows the fraction of cells above 180 CAGs over time for each donor. These curves were

generated based on the two-process model that fit best for each donor, as the model provides a

prediction of the CAG length distribution at any point in the patient’s life. The three X’s on the

plot show the three data points we have on age of neurological onset. Donor #1 has an age of

onset of 40, donor #2 has an age of onset of 75, and donor #5 has an age of onset of 30. The

position of X’s on the y-axis show the fraction of cells above 180 CAGs the model predicts them

to have by that age.

To find a fraction of cells above 180 CAGs that best predicts age of onset, we performed a brute

force search on values between 0 and 1. For each fraction, we found the earliest age at which the

donor reached that fraction of cells above 180 CAGs and used that as the predicted age of onset.

We then compared the predicted age of onset to the actual age of onset from the data, using root

mean squared error (RMSE) as our metric. Figure 5d shows the RMSE for each fraction we

tested, and we found that a fraction of 0.28 gave the lowest RMSE of 7.39 years. That best

fraction of 0.28 is drawn in as the blue line in Figure 5d.

Because not all cells above 180 CAGs have died, when 0.28 of the cells are above 180 CAGs, a

smaller fraction, closer to somewhere between 0.20 to 0.25 of cells might be dead. This gives us a

general estimate that age of onset happens when roughly 20% to 25% of their SPNs have died.

This prediction was quite noisy, especially given that the lowest RMSE was 7.39 years. One

source of noise comes from the age of onset data, as the age of onset is highly dependent on when

the patient decides to get checked, and the true age of onset will always be earlier than when they

are diagnosed. Further, for older patients, it may take even longer for them to realize they have

symptoms as they could be attributed to aging. We also only had three data points on age of

onset, which was very limited for making accurate predictions.

Despite the prediction being noisy, it is still helpful in determining a general range at which age of

symptoms begins, and helps us understand the degree of somatic expansion that has occurred by

that time. In the future, we will work to incorporate more data to make this prediction more

robust.
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6 Conclusion

The McCarroll Lab devised a method of collecting accurate CAG measurements from specific

brain cell types, allowing us to analyze somatic expansion specifically in the SPNs, which has not

been possible before. Through applying and evaluating different models for somatic expansion, we

found that previous models that successfully modeled other diseases failed to explain the observed

distribution of CAG repeat lengths of SPNs from HD patients. This new data also allowed us to

incorporate estimates of cell death into the models, which is an important factor in HD

progression. When cell death was included, the original model was even more incapable fitting the

observed data, as it was not able to get enough cells to high CAG lengths while maintaining the

distribution shape seen in the data. This led us to implement a power model, in which the rate of

expansion increased as a power function of the CAG length. Though the power model fit far

better, it still consistently failed to capture one feature of the data, which was the distinct long

tail of CAG lengths that started at approximately 70 CAGs. We then implemented a model

consisting of two processes, and found that it consistently fit better than both other single process

models, as it was able to capture these distinctive features of the data.

These models help us understand a few things about somatic expansion. First, they suggest that

there may be two biological processes driving somatic expansion, with different CAG length

thresholds of 36 CAGs and roughly 70 CAGs. The threshold of 36 CAGs is the initial threshold

for somatic instability which has been widely known, but we suspect that there may be a second

threshold at around 70 CAGs after which somatic expansion occurs at a much faster rate.

Second, these models estimate that roughly 68% of mutations are expansions and 32% are

contractions, providing evidence that contractions do occur frequently, but just less than

expansions. Third, these models indicate that the rate of somatic expansion increases as a

superlinear function of CAG length, and that it may only take 2 years on average for a cell to go

from exhibiting transcriptional dysregulation to death. Lastly, these models estimate that age of

onset begins when roughly 28% of the cells are over 180 CAGs, which may translate to around

20− 25% cell death in the SPNs.

These findings may inform the design of therapeutics and help companies prioritize drugs that

target the somatic expansion process. The model indicates that the average cell takes around 40

years to go from their inherited length to 70 CAGs, and that somatic expansion begins to speed

up greatly after that threshold. This means that if a therapeutic could slow down the somatic

expansion process of cells in those lower CAG ranges by even a small fraction, it could potentially

prevent a large majority of cells from ever reaching the second threshold and expanding to

pathogenically high CAG values within a normal person’s lifespan. Further, the idea that cells

only begin to die in a very short window of time suggests that cell death is not a slow process

caused by the gradual buildup of toxins, but a sudden process only affecting a small group of cells
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at any time. This is important because current candidate therapeutic approaches are based on

reducing Huntingtin expression levels [17], but it may be that only a small fraction of SPNs are

affected by such toxicity at any point in time. Our findings rather point to therapeutics that

target somatic expansion as being potentially more effective, as such treatments could be used

later in disease progression and still protect a majority of the surviving cells from expanding into

toxic CAG lengths. Ultimately, we hope our findings may shift more focus onto developing

therapeutics that target the somatic expansion process.

For future work, we hope to find biological evidence supporting the two-process model and the

superlinear increase in rate of somatic expansion. There are other labs who are currently

developing in-vitro experiments with DNA constructs that can monitor the expansion and

contraction events. Future experiments using those systems could suggest biophysical processes

consistent with our findings. We also hope to move our model into a likelihood framework that

would be more statistically robust.
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