Products of reflections in smooth Bruhat intervals MIT PRIMES Conference 2021 $\begin{array}{c} {\sf Ram} \ {\sf Goel}^1 \\ {\sf Mentored} \ {\sf by} \ {\sf Dr.} \ {\sf Christian} \ {\sf Gaetz}^2 \end{array}$ ¹High school ²MIT, Harvard October 16, 2021 Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? Intuitively, a group is a set of elements along with a rule on how to combine any two of them. Formally: - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? Intuitively, a group is a set of elements along with a rule on how to combine any two of them. Formally: #### **Definition** A group G is defined to be • a set of elements, and - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? Intuitively, a group is a set of elements along with a rule on how to combine any two of them. Formally: #### Definition A group G is defined to be - a set of elements, and - a binary operation *, which specifies the resulting element upon multiplication of any two elements. You can think of this just as multiplication. October 16, 2021 - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? Intuitively, a group is a set of elements along with a rule on how to combine any two of them. Formally: #### Definition A group G is defined to be - a set of elements, and - a binary operation *, which specifies the resulting element upon multiplication of any two elements. You can think of this just as multiplication. Not every set and operation make a group. A group's set and operation must obey some special rules. These are called **group axioms**. We won't have time to go over these. - Algebraic combinatorics is the study of discrete objects and how they behave in algebraic contexts such as groups. - What is a group? Intuitively, a group is a set of elements along with a rule on how to combine any two of them. Formally: #### Definition A group G is defined to be - a set of elements, and - a binary operation *, which specifies the resulting element upon multiplication of any two elements. You can think of this just as multiplication. Not every set and operation make a group. A group's set and operation must obey some special rules. These are called **group axioms**. We won't have time to go over these. Generators are elements such that we can write any other element as products of generators. Every element of the group can be written as a **word** or **string** in terms of generators. The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. For example, all elements of S_3 are 123, 132, 213, 231, 312, 321. The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. For example, all elements of S_3 are 123, 132, 213, 231, 312, 321. Any permutation is the composition of adjacent transpositions, i.e. adjacent swaps. Hence the group's generators are $s_i = (i \ i+1)$ for each $i=1,\ldots,n-1$. The group's identity e is the identity permutation. The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. For example, all elements of S_3 are 123, 132, 213, 231, 312, 321. Any permutation is the composition of adjacent transpositions, i.e. adjacent swaps. Hence the group's generators are $s_i = (i \ i+1)$ for each $i=1,\ldots,n-1$. The group's identity e is the identity permutation. ### Example The permutation 24135 in S_5 can be obtained by the following: The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. For example, all elements of S_3 are Any permutation is the composition of adjacent transpositions, i.e. adjacent swaps. Hence the group's generators are $s_i = (i \ i+1)$ for each $i=1,\ldots,n-1$. The group's identity e is the identity permutation. #### Example The permutation 24135 in S_5 can be obtained by the following: $$e = 12345 \xrightarrow{s_1} 21345 \xrightarrow{s_3} 21435 \xrightarrow{s_2} 24135.$$ The **symmetric group** S_n is the group of permutations of $\{1, \ldots, n\}$. For example, all elements of S_3 are Any permutation is the composition of adjacent transpositions, i.e. adjacent swaps. Hence the group's generators are $s_i = (i \ i+1)$ for each $i=1,\ldots,n-1$. The group's identity e is the identity permutation. #### Example The permutation 24135 in S_5 can be obtained by the following: $$e = 12345 \xrightarrow{s_1} 21345 \xrightarrow{s_3} 21435 \xrightarrow{s_2} 24135.$$ So we write $24135 = s_1 s_3 s_2$. (In particular, $s_1 s_3 s_2$ is a *word* in terms of the *letters* s_1, s_2, s_3, s_4 .) # Coxeter Groups ### **Definition** Given some n^2 integers $m_{i,j}$, with - $m_{i,i} = 1$ for all i, and - $m_{i,j} \geq 2$ for all $i \neq j$, the **Coxeter Group** for this (m_{ij}) is a group with generators s_1,\ldots,s_n given by $$(s_i s_j)^{m_{i,j}} = e$$ for all $i, j \in \{1, ..., n\}$. # Coxeter Groups #### **Definition** Given some n^2 integers $m_{i,i}$, with - $m_{i,i} = 1$ for all i, and - $m_{i,i} \geq 2$ for all $i \neq j$, the **Coxeter Group** for this (m_{ij}) is a group with generators s_1, \ldots, s_n given by $$(s_i s_j)^{m_{i,j}} = e$$ for all $i, j \in \{1, ..., n\}$. #### Definition The **Coxeter graph** for a Coxeter Group G has n vertices s_1, \ldots, s_n , and has an edge from i to j if and only if $m_{i,j} \geq 3$. Those are some pretty abstract definitions; let's go back to the S_n example. Those are some pretty abstract definitions; let's go back to the S_n example. • $s_i^2 = e$ for any i, since swapping i and i + 1 twice does nothing. Those are some pretty abstract definitions; let's go back to the S_n example. - $s_i^2 = e$ for any i, since swapping i and i + 1 twice does nothing. - $(s_i s_j)^2 = e$ for $j i \ge 2$. Indeed, "non-adjacent" s_i and s_j commute, i.e. $s_i s_j = s_j s_i$, since these two swaps do not interfere with each other. So $(s_i s_j)^2 = e$. Those are some pretty abstract definitions; let's go back to the S_n example. - $s_i^2 = e$ for any i, since swapping i and i + 1 twice does nothing. - $(s_i s_j)^2 = e$ for $j i \ge 2$. Indeed, "non-adjacent" s_i and s_j commute, i.e. $s_i s_j = s_j s_i$, since these two swaps do not interfere with each other. So $(s_i s_j)^2 = e$. - $(s_i s_{i+1})^3 = e$ for i = 1, ..., n-1. First swap (i, i+1), then swap (i+1, i+2): $$i \rightarrow i \rightarrow i+1,$$ $i+1 \rightarrow i+2 \rightarrow i+2,$ $i+2 \rightarrow i+1 \rightarrow i,$ which is the 3-cycle (i, i+1, i+2), which cycles back to itself upon cubing. # Showing S_n is a Coxeter Group (cont.) These match up with the Coxeter Group rules! Hence S_n is a Coxeter Group, given by the following m-values: - $m_{i,i} = 1$ for all i, - $m_{i,j} = 2$ for all $j i \ge 2$, - $m_{i,i+1} = 3$ for all $i \le n-1$. # Showing S_n is a Coxeter Group (cont.) These match up with the Coxeter Group rules! Hence S_n is a Coxeter Group, given by the following *m*-values: - $m_{i,i} = 1$ for all i, - $m_{i,i} = 2$ for all i i > 2, - $m_{i,i+1} = 3$ for all $i \le n-1$. S_n 's Coxeter graph is therefore a line graph: where there are n-1 dots, each representing s_1, \ldots, s_{n-1} . This is called a Coxeter group of type A_{n-1} or type S_n . The Bruhat order is a partial order, or poset, on elements of a Coxeter Group. The **Bruhat order** is a **partial order**, or **poset**, on elements of a Coxeter Group. For the symmetric group, levels of the poset are given by the number of inversions in the permutation. Covering relations are swaps that increase the number of inversions by exactly 1. The **Bruhat order** is a **partial order**, or **poset**, on elements of a Coxeter Group. For the symmetric group, levels of the poset are given by the number of inversions in the permutation. Covering relations are swaps that increase the number of inversions by exactly 1. S_3 : The **Bruhat order** is a **partial order**, or **poset**, on elements of a Coxeter Group. For the symmetric group, levels of the poset are given by the number of inversions in the permutation. Covering relations are swaps that increase the number of inversions by exactly 1. S_3 : 7/11 • A **reflection** in S_n is an element that swaps two positions. - A **reflection** in S_n is an element that swaps two positions. - Some elements of a Coxeter Group are called **smooth**. - A **reflection** in S_n is an element that swaps two positions. - Some elements of a Coxeter Group are called **smooth**. There is an algebraic geometry viewpoint to smoothness. But in S_n , smooth elements can concretely be characterized as all permutations avoiding the patterns 3412 and 4231. - A **reflection** in S_n is an element that swaps two positions. - Some elements of a Coxeter Group are called **smooth**. There is an algebraic geometry viewpoint to smoothness. But in S_n , smooth elements can concretely be characterized as all permutations avoiding the patterns 3412 and 4231. The following theorem was background for our research: - A **reflection** in S_n is an element that swaps two positions. - Some elements of a Coxeter Group are called **smooth**. There is an algebraic geometry viewpoint to smoothness. But in S_n , smooth elements can concretely be characterized as all permutations avoiding the patterns 3412 and 4231. The following theorem was background for our research: ### Theorem (Gilboa and Lapid, 2020) For any smooth $w \in S_n$, let $\{t_1, \ldots, t_k\}$ be the set of reflections less than or equal to w in Bruhat order. There exists a (compatible) order $t_1 \prec t_2 \prec \cdots \prec t_k$ for which $t_1t_2\cdots t_k=w$. - A **reflection** in S_n is an element that swaps two positions. - Some elements of a Coxeter Group are called **smooth**. There is an algebraic geometry viewpoint to smoothness. But in S_n , smooth elements can concretely be characterized as all permutations avoiding the patterns 3412 and 4231. The following theorem was background for our research: ### Theorem (Gilboa and Lapid, 2020) For any smooth $w \in S_n$, let $\{t_1, \ldots, t_k\}$ be the set of reflections less than or equal to w in Bruhat order. There exists a (compatible) order $t_1 \prec t_2 \prec \cdots \prec t_k$ for which $t_1t_2\cdots t_k=w$. ### Example In S_3 , everything is smooth. The set of reflections less than or equal to $w = s_1 s_2 s_1$ in Bruhat order is $\{s_1 s_2 s_1, s_1, s_2\}$. The claimed ordering exists: $$s_2 \cdot (s_1 s_2 s_1) \cdot s_1 = s_2 s_1 s_2 = s_1 s_2 s_1.$$ #### Our Research Our research generalizes Gilboa and Lapid's theorem by proving further structure exists for these reflections in the Bruhat order: ### Our Research Our research generalizes Gilboa and Lapid's theorem by proving further structure exists for these reflections in the Bruhat order: ### Theorem (Gaetz and G., 2021) For any smooth $w \in S_n$, let $\{t_1, \ldots, t_k\}$ be the set of reflections less than or equal to w in Bruhat order. There exists a (compatible) order $t_1 \prec t_2 \prec \cdots \prec t_k$ for which: - $t_1t_2\cdots t_k=w$. - $e \rightarrow t_1 \rightarrow t_1 t_2 \rightarrow \cdots \rightarrow t_1 \cdots t_k$ is a saturated chain in Bruhat order. - $e \rightarrow t_k \rightarrow t_k t_{k-1} \rightarrow \cdots \rightarrow t_k \cdots t_1$ is a saturated chain in Bruhat order. Our next goal is to generalize the above further to any *compatible order*, a kind of order used in the combinatorial constructions for these products of reflections. # Theorem Example ### Example In S_3 , consider $w = s_1 s_2 s_1 \in S_3$. We use the order $s_2 \prec s_1 s_2 s_1 \prec s_1$: (Note $s_1s_2s_1=s_2s_1s_2$.) Above on the left, the reflections s_2 , then $s_1s_2s_1$, then s_1 are what we multiply in covering relations to make a saturated Bruhat chain. The right is a different chain, in the reverse (suffix products) order. ### Acknowledgements - My mentor, Dr. Christian Gaetz - MIT PRIMES-USA, for giving the opportunity to research - Prof. Pavel Etingof, Dr. Slava Gerovitch, Dr. Tanya Khovanova - My family, for supporting me