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Introduction

Algebraic combinatorics is the study of discrete objects and how they behave
in algebraic contexts such as groups.

What is a group? Intuitively, a group is a set of elements along with a rule on
how to combine any two of them. Formally:

Definition
A group G is defined to be

a set of elements, and

a binary operation ∗, which specifies the resulting element upon multiplication of
any two elements. You can think of this just as multiplication.

Not every set and operation make a group. A group’s set and operation must
obey some special rules. These are called group axioms. We won’t have time to
go over these.

Generators are elements such that we can write any other element as products of
generators. Every element of the group can be written as a word or string in
terms of generators.
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Definition (Group Example)

The symmetric group Sn is the group of permutations of {1, . . . , n}.

For
example, all elements of S3 are

123, 132, 213, 231, 312, 321.

Any permutation is the composition of adjacent transpositions, i.e. adjacent
swaps. Hence the group’s generators are si = (i i + 1) for each i = 1, . . . , n − 1.
The group’s identity e is the identity permutation.

Example

The permutation 24135 in S5 can be obtained by the following:

e = 12345
s1−→ 21345

s3−→ 21435
s2−→ 24135.

So we write 24135 = s1s3s2. (In particular, s1s3s2 is a word in terms of the letters
s1, s2, s3, s4.)
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Coxeter Groups

Definition

Given some n2 integers mi,j , with

mi,i = 1 for all i , and

mi,j ≥ 2 for all i 6= j ,

the Coxeter Group for this (mij) is a group with generators s1, . . . , sn given by

(si sj)
mi,j = e

for all i , j ∈ {1, . . . , n}.

Definition
The Coxeter graph for a Coxeter Group G has n vertices s1, . . . , sn, and has an
edge from i to j if and only if mi,j ≥ 3.
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Sn is a Coxeter Group

Those are some pretty abstract definitions; let’s go back to the Sn example.

s2
i = e for any i , since swapping i and i + 1 twice does nothing.

(si sj)
2 = e for j − i ≥ 2. Indeed, “non-adjacent” si and sj commute, i.e.

si sj = sjsi , since these two swaps do not interfere with each other. So
(si sj)

2 = e.

(si si+1)3 = e for i = 1, . . . , n − 1. First swap (i , i + 1), then swap
(i + 1, i + 2):

i → i → i + 1,

i + 1→ i + 2→ i + 2,

i + 2→ i + 1→ i ,

which is the 3-cycle (i , i + 1, i + 2), which cycles back to itself upon cubing.
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Showing Sn is a Coxeter Group (cont.)

These match up with the Coxeter Group rules! Hence Sn is a Coxeter Group,
given by the following m-values:

mi,i = 1 for all i ,

mi,j = 2 for all j − i ≥ 2,

mi,i+1 = 3 for all i ≤ n − 1.

Sn’s Coxeter graph is therefore a line graph:

where there are n− 1 dots, each representing s1, . . . , sn−1. This is called a Coxeter
group of type An−1 or type Sn.
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Brief Introduction to Bruhat Order

The Bruhat order is a partial order, or poset, on elements of a Coxeter Group.

For the symmetric group, levels of the poset are given by the number of inversions
in the permutation. Covering relations are swaps that increase the number of
inversions by exactly 1. S3:
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Smoothness and Background Theorem

A reflection in Sn is an element that swaps two positions.

Some elements of a Coxeter Group are called smooth. There is an algebraic
geometry viewpoint to smoothness. But in Sn, smooth elements can
concretely be characterized as all permutations avoiding the patterns 3412
and 4231.

The following theorem was background for our research:

Theorem (Gilboa and Lapid, 2020)

For any smooth w ∈ Sn, let {t1, . . . , tk} be the set of reflections less than or equal
to w in Bruhat order. There exists a (compatible) order t1 ≺ t2 ≺ · · · ≺ tk for
which t1t2 · · · tk = w.

Example

In S3, everything is smooth. The set of reflections less than or equal to
w = s1s2s1 in Bruhat order is {s1s2s1, s1, s2}. The claimed ordering exists:

s2 · (s1s2s1) · s1 = s2s1s2 = s1s2s1.
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Our Research

Our research generalizes Gilboa and Lapid’s theorem by proving further structure
exists for these reflections in the Bruhat order:

Theorem (Gaetz and G., 2021)

For any smooth w ∈ Sn, let {t1, . . . , tk} be the set of reflections less than or equal
to w in Bruhat order. There exists a (compatible) order t1 ≺ t2 ≺ · · · ≺ tk for
which:

t1t2 · · · tk = w.

e → t1 → t1t2 → · · · → t1 · · · tk is a saturated chain in Bruhat order.

e → tk → tktk−1 → · · · → tk · · · t1 is a saturated chain in Bruhat order.

Our next goal is to generalize the above further to any compatible order, a kind of
order used in the combinatorial constructions for these products of reflections.
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Theorem Example

Example

In S3, consider w = s1s2s1 ∈ S3. We use the order s2 ≺ s1s2s1 ≺ s1:

(Note s1s2s1 = s2s1s2.) Above on the left, the reflections s2, then s1s2s1, then s1

are what we multiply in covering relations to make a saturated Bruhat chain. The
right is a different chain, in the reverse (suffix products) order.
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