
A practical analysis of Rust’s
concurrency story

Aditya Saligrama and Andrew Shen
(and a little bit Jon Gjengset)

PRIMES Computer Science Conference, October 13, 2018

Introduction

- Concurrency is hard.
- High-performance concurrency is harder.
- Fearless concurrency would be nice…

Rust + concurrency = <3?

- Rust aims to provide “fearless concurrency”
- For low-level concurrent algorithms too?
- Let’s put that to the test!

Lock-free hashmaps FTW!

- Hashmaps are ubiquitous.
- Arc<Mutex<HashMap<_, _>>> anyone?
- Lock-free concurrent algorithms fix this…

...but they're hard to get right!

Rust to the rescue‽

/// Huh, I guess that *is* a bug…
mod good {

Locks are not optional, and that is good!

- Locks wrap the type they protect
- Must go through Mutex<T> to access T
- Normally locks are like an “honor system"

- But programmers have no honor...

Look ma’, no frees!
fn foo() {
 let n = Box::new(5);
 // ...
 // n leaves scope here, the memory is automatically freed
}

Borrows Uncover Bugs

- Catches accidental sharing and mutation
- Conditions you to write better code

- Forces you to think carefully about how
your data is accessed.

Pseudocode in C maps well to Rust

- Matches C-style pseudo code closely
- impl Rust for AcademicPaperAlgo {}

- Just copy and paste! (pfft yeah right...)

- Violate safety restrictions → use unsafe
- Marked regions might have bugs!

Calling out unsafe code is valuable

Safe encapsulation of unsafety is possible!
fn get (&self, key : usize) -> Option<usize> {
 let g = epoch::pin(); // open an epoch
 let k = self.head
 .load(Ordering::Relaxed, &g)
 .unwrap();
 // do something with loaded node k
 drop(g); // close the epoch
 // can no longer refer to k
 // the node at self.head can now be freed
}

Safe encapsulation of unsafety is possible!

- crossbeam library provides safe APIs for
concurrent operations.

- Let us remove ⅔ of unsafe code + better
performance!

}

/// No… It *does* live long enough!
mod bad {

fn foo(node: *mut Foo) -> usize {
 unsafe { Box::from_raw(node) }.value

}

Auto-Free in an unsafe context
fn foo(node: *mut Foo) -> usize {
 unsafe { Box::from_raw(node) }.value

 let x = unsafe { Box::from_raw(node) };
 let v = x.value;
 mem::forget(x); // don’t free the Box
 v

}

fn foo(node: *mut Foo) -> usize {
 unsafe { Box::from_raw(node) }.value

 let x = unsafe { Box::from_raw(node) };
 let v = x.value;
 mem::forget(x); // don’t free the Box
 v

 unsafe { &*node }.value
}

Tracking pointer modifications

- Encode information in pointers (e.g., low bits)
- Dereferencing == unsafe!
- Who knows if it is intended or accidental?
- Can we solve this with the type system?

let x = Box::new([0; 8192]);
let ptr = Box::into_raw(x);
let ptr2: *addr _ = ptr.add_offset(200);
// require specific function for turning *addr -> *mut
// all dereferencing functions take *mut
let z = unsafe { &*ptr2 }; // ERR: ptr2 is *addr!
let w = unsafe { &*ptr }; // OK: ptr is unmodified
let z = unsafe { &*std::mem::declare_valid(ptr2) };

// add to std::mem
fn declare_valid<T>(*addr T) -> *mut T {}

Pointers, pointers, oh so many pointers!

- Many choices:
- AtomicPtr<T>, *mut T, &mut T.

- Differences? Advantages?
- Can combine types too
- &mut *mut T

}

/// Why is the compiler yelling at me?
mod ugly {

unwrap() all the things!
fn foo () -> Foo {
 fn_returning_result().unwrap()
}

fn main () {
 do_something(foo());
}

fn foo () -> Result<Foo> {
 fn_returning_result()?
}

fn main () {
 match foo() {
 Ok(f) => {
 do_something(f);
 },
 Err(e) => { /* … */ }
 }
}

Too easy to err on the side of atomics
struct Table {
 nbuckets: AtomicUsize, // could just be a usize!
 // ..
}

struct HashMap {
 table: RwLock<Table>,
 // ..
}

We're so so tired of E0597
1 fn main() {
2 struct Foo<'a> {
3 x: Option<&'a u32>,
4 }
5
6 let mut x = Foo { x: None };
7 let y = 0;
8 x.x = Some(&y);
9 }

error[E0597]: `y` does not live long enough
 --> src/main.rs:8:17
 |
8 | x.x = Some(&y);
 | ^ borrowed value does
not live long enough
9 | }
 | - `y` dropped here while still borrowed
 |
 = note: values in a scope are dropped in
the opposite order they are created

https://doc.rust-lang.org/stable/error-index.html#E0597

Types get 2complicated2fast.
HashMap<
 String,
 Arc<Mutex<HashMap<
 String,
 HashMap<usize, usize>
 >>>
>

What the heck is Ordering?

- All Atomic Functions require Ordering
- SeqCst, Relaxed, etc.

- These are poorly explained and confusing
- But also poorly explained in C!

Compiler likes suggesting adding lifetimes
fn search() -> &Node {
 let n = Node::new();
 // ...
 &n
}

fn main() {
 search();
}

error[E0106]: missing lifetime specifier
 --> src/main.rs:1:16
 |
1 | fn search() -> &Node {
 | ^ expected lifetime parameter
 |
 = help: this function's return type contains a
borrowed value, but there is no value for it to be
borrowed from
 = help: consider giving it a 'static lifetime

}

/// Thank you!
/// github.com/saligrama/concache
/// Aditya: saligrama.io
/// Andrew: shenandrew95@gmail.com
mod questions {

} // <- we didn't forget!

