
Aleator: Random Beacon via 
Scalable Threshold Signatures

Robert Chen
Mentored by Alin Tomescu

1

PRIMES Computer Science Conference 
10/13/18



Why Scalability?

● Scalable threshold signature scheme 
○ Increased security
○ Scalable random beacon

2



What is a Random Beacon?

A set of servers that periodically output a random number.

Random 
Output 

Servers

R1

R2

Rn

3



What is a Random Beacon?

A set of servers that periodically output a random number.

● Some servers could maliciously “bias” the output

4



What is a Random Beacon?

A set of servers that periodically output a random number.

● Some servers could maliciously “bias” the output
● Need unbiasability: servers cannot influence the output 

in their favor

5



Contributions

● Elegant, scalable random beacon design
● For 100,000 participants, a random output can be produced every 20 seconds 

with only 3.05 MB of bandwidth (~5 minutes if many dishonest)
● Limiting factor is bandwidth: For 33 outputs × 3.05MB/output ≈ 100 MB, we 

can produce a random output every 0.6 to 10 seconds

6

Participants Time Total Time Across 
System

Bandwidth

Randherd 512 6s >200s >100 MB

Aleator 33,000 4s 8s 1 MB



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

7



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R1

R2

Rn

8



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R1

R2

Rn

Assuming they can agree on 
everyone’s random inputs

9



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Random 
Output 

Servers

R1

R2

Rn

10



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

Cannot exclude any random inputs

11

Random 
Output 

R1

R2

Rn



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Random 
Output 

Servers

R1

R2

Rn

12



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1

R2

13



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1

R2

14



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1

R2

Rx

15



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1

R2

Rx

Random Output = X

16



Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

c1 = C(R1) 

c2 = C(R2) 

cn = C(Rn) 

Compute own 
commitment

17



Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

c1

c2

cn

18



Approach: Commit-then-reveal random inputs

Servers

c1, c2, … , cn 

c1, c2, … , cn 

c1, c2, … , cn 

Naive Random Beacon: Commit-then-reveal

19



Approach: Commit-then-reveal random inputs

Servers

R1

R2

Rn

c1, c2, … , cn 

c1, c2, … , cn 

c1, c2, … , cn 

Naive Random Beacon: Commit-then-reveal

20



Approach: Commit-then-reveal random inputs

Servers

R1

R2

Rn

c1 = C(R1), … , cn = C(Rn) 
 
  
c1 = C(R1), … , cn = C(Rn) 
 
  

c1 = C(R1), … , cn = C(Rn) 
 
  

Verify all 
Commitments

Naive Random Beacon: Commit-then-reveal

21



Approach: Commit-then-reveal random inputs

Servers

R1

R2

Rn

Random 
Output 

c1 = C(R1), … , cn = C(Rn) 
 
  
c1 = C(R1), … , cn = C(Rn) 
 
  

c1 = C(R1), … , cn = C(Rn) 
 
  

Verify all 
Commitments

Naive Random Beacon: Commit-then-reveal

22



Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R1

R2

Rn

Random 
Output 

c1 = C(R1), … , cn = C(Rn) 
 
  
c1 = C(R1), … , cn = C(Rn) 
 
  

c1 = C(R1), … , cn = C(Rn) 
 
  

Verify all 
Commitments

Naive Random Beacon: Commit-then-reveal

23



Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R1

R2

Naive Random Beacon: Commit-then-reveal

24



Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R1

R2

Naive Random Beacon: Commit-then-reveal

25



Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R1

R2
No Random Output 

Produced

Naive Random Beacon: Commit-then-reveal

26



Solution: Use a threshold signature scheme

σ1

σ2

σn

σ = random output

(e.g., DFINITY blockchain)27



Solution: Use a threshold signature scheme

σ1

σ2

σn

σ = random output

(e.g., DFINITY blockchain)28



Digital Signatures: Motivation

Alice Bob

M

M = “Hello, this is Alice.”

29



Problem: Mallory can pretend to be Alice to Bob

Alice Bob

M’

Mallory
M’ = “Hello, this is Alice.”

30



Problem: Mallory can tamper with Alice's messages

Alice Bob

M’

M

M = “Hello, this is Alice.”

Mallory
M’ = “Hello, this is John.”

31



Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

Alice Bob

 

Bob has Alice’s 
public keyAlice has her own

 secret key
32



Alice Bob

 

Bob has Alice’s 
public key

M = “Hello, this is Alice.”
σ = Sign(M, SKAlice)

Alice has her own
 secret key

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

33



Alice Bob

M

σ

 

Bob has Alice’s 
public key

M = “Hello, this is Alice.”
σ = Sign(M, SKAlice)

Alice has her own
 secret key

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

34



Alice Bob

Verify(σ, M, PKAlice) = true

Bob has Alice’s 
public key

M

σ

M = “Hello, this is Alice.”
σ = Sign(M, SKAlice)

Alice has her own
 secret key

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

35



Naive Threshold Signatures

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)
36



Naive Threshold Signatures

σ1 = Sign(M, SK1)

M

σ1

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)

M

σ2

M

σk

37



Naive Threshold Signatures

σ1 = Sign(M, SK1)

M

σ1
Verify(σ1, M, PK1) = true

σ2 = Sign(M, SK2)

Verify(σ2, M, PK2) = true

σk = Sign(M, SKk)

Verify(σk, M, PKk) = true

M

σ2

M

σk

38



Naive Threshold Signatures

σ1 = Sign(M, SK1)

M

σ1
Verify(σ1, M, PK1) = true

σ2 = Sign(M, SK2)

Verify(σ2, M, PK2) = true

σk = Sign(M, SKk)

Verify(σk, M, PKk) = true

Too large
● k signatures

Too much time 
● k verifications

M

σ2

M

σk

39



Threshold Signatures (Desmedt, CRYPTO 1987)

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)

M

σ1

M

σ2

M

σk

M

σ

Aggregator
Single 

threshold 
signature

Signature Shares

Verifies 
signature 

shares

40



Threshold Signatures (Desmedt, CRYPTO 1987)

σ1 = Sign(M, SK1)

Verify(σ, M, PK) = true

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)

● One threshold 
signature

● One verification

M

σ1

M

M

σk

M

σ

Aggregator
Single 

threshold 
signature

Signature Shares

Verifies 
signature 

shares

σ2

41



Random Beacon via Threshold Signatures

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)

M

σ1

M

M

σk

M

σ

Leader 
(Aggregator)

Random Output
= Single threshold 

signature

Signature Shares

Verifies 
signature 

shares

Participants sign M = current time.

σ2

42



Random Beacon Throughput

● Random beacon throughput = signature scheme throughput (assuming good 
network)

● High traffic at leader
● Multiple leaders ⇒ more throughput ⇒ more traffic :(

σ1

σ2

σn

σ = random 
output

43



Random Beacon: Benefits of Threshold Signatures

Original Problems
● Last participant controls random output
● Dishonest participants refuse to reveal

Addressed using Threshold Signature Scheme
● Guaranteed to produce a signature, as long as k of the total n servers are 

honest
● Each message has a unique threshold signature

44



But… We Want a Scalable Random Beacon!

● Servers can be compromised
● Crucial to have a very large set of servers 
● Can we get a scalable threshold signature scheme?

45



Shamir’s Secret Sharing

● Recover secret given k shares

46



Shamir’s Secret Sharing

1 Point - Point

● Recover secret given k shares

47



Shamir’s Secret Sharing

1 Point - Point 2 Points - Line

● Recover secret given k shares

48



Shamir’s Secret Sharing

1 Point - Point 2 Points - Line 3 Points - Quadratic

● Recover secret given k shares

49



Lagrange Interpolation for Secret Sharing

Current implementations are inefficient
● Given k points, takes O(k2) time to recover secret

We use some known mathematical tricks to speed this up to        
O(klog2k) time

Net result: We can aggregate a threshold signature from 100,000 
participants in 20 seconds rather than 13 minutes.

50



Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

51



Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

Machine Details:
ASUS ZenBook
Core i7-8550U CPU @ 1.80Ghz
16 GB of RAM

Ubuntu 16.04.5 LTS running inside VirtualBox 5.2.18 r124319

52



O(k2) Naive Aggregation Time

53

Ti
m

e 
(s

)

Participants



O(k log2 k) Efficient Aggregation Time

54

Ti
m

e 
(s

)

Participants



55

O(k2) Naive Aggregation Time

Ti
m

e 
(s

)

Participants



56

O(k log2 k) Efficient Aggregation Time

Ti
m

e 
(s

)

Participants



Threshold Signatures: Not just for Random Beacons

Applications to:
● Consensus algorithms (such as the one used 

by Bitcoin)
● Securing HTTPs (every time you access a 

webpage)

57



Future Work

Implement random beacon protocol
● Threshold signature implementation works

Verifying signature shares is computationally expensive
● We speed it up using batch verification
● Fast when almost all shares are valid, slow when many are not

More parallelization by decreasing traffic
● Optimistically guess subset of k honest servers

58



Acknowledgements

I would like to thank:
● My mentor, Alin Tomescu, for his support and guidance
● Srini Devadas, for coordinating CS-PRIMES
● My parents and family
● MIT-PRIMES program

59



Thank you!
Questions?

60


