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Why Scalability?

e Scalable threshold signature scheme
o Increased security
o Scalable random beacon



What is a Random Beacon?

A set of servers that periodically output a random number.

Servers

R, Random
Output

R
n____J




What is a Random Beacon?
A set of servers that periodically output a random number.

e Some servers could maliciously “bias” the output



What is a Random Beacon?
A set of servers that periodically output a random number.
e Some servers could maliciously “bias” the output

e Need unbiasability: servers cannot influence the output
in their favor



Contributions

e Elegant, scalable random beacon design

e For 100,000 participants, a random output can be produced every 20 seconds
with only 3.05 MB of bandwidth (~5 minutes if many dishonest)

e Limiting factor is bandwidth: For 33 outputs x 3.05MB/output = 100 MB, we
can produce a random output every 0.6 to 10 seconds

Participants | Time Total Time Across Bandwidth
System
Randherd 512 6s >200s >100 MB

Aleator 33,000 4s 8s 1 MB
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Approach: Combine all random inputs to produce random output
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Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers
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Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Compute own
commitment
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Approach: Commit-then-reveal random inputs
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Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

Cys Cpy -o 5 C g — R1
_> R
C1’CZ""’Cn 2

Cys Cpy -v 5 C - Rn

20



Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
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Approach: Commit-then-reveal random inputs
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Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal
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Solution: Use a threshold signature scheme

* “ N
— 0, —. ‘ —— 0 = random output

o. /
n

(e.g., DFINITY blockchain)




Solution: Use a threshold signature scheme

* “ N
‘ — 0, — ‘ —— 0 = random output

o. /
n

(e.g., DFINITY blockchaing




Digital Signatures: Motivation

Alice
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Problem: Mallory can pretend to be Alice to Bob

Alice Bob

Mallory
M’ = “Hello, this is Alice.”
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Problem: Mallory can tamper with Alice's messages

Alice Bob

— L

M = “Hello, this is Alice.”

)
Mallory
M’ = “Hello, this is John.”
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Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

Alice Bob

Bob has Alice’s
Alice has her own public key

secret key
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Alice Bob

M = “Hello, this is Alice.”
o = Sign(M, SK,,..)
Bob has Alice’s
Alice has her own public key

secret key
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Solution: Digital Signatures

Alice

(Diffie-Hellman '76, RSA '78)
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M = “Hello, this is Alice.”
o = Sign(M, SK,,..)
Alice has her own
secret key

Verify(o, M, PK,. ) = truea/

Bob has Alice’s
public key
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Naive Threshold Signatures

o, = Sign(M, SK,)

o, = Sign(M, SK,)

o, = Sign(M, SK)
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Naive Threshold Signatures
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Naive Threshold Signatures

g — Verify(o,, M, PK,) = true &/
1

o, = Sign(M, SK,)
M _ _
O — o, Verify(o,, M, PK,) = true&/
o, Slgn (M, SK,)

g — Verify(a,, M, PK,) = true s/
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o, = Sign(M, SK,)
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Naive Threshold Signatures

o, = Sign(M, SK,)

o, Slgn (M, SK,)

o, = Sign(M, SK,)

Verify(a., M, PK,) = true

Verify(o,, M, PK,) = trues/_roo large

e Kk signatures
Too much time
e k verifications

Verify(o,, M, PK,) = true s/
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Threshold Signatures (Desmedt, CRYPTO 1987)

Signature Shares

o, Verifies
e/ .
o, = Sign(M, SK,) signature
shares
M M
_— 02 _— _— O' _—
e/ e/

o, = Slgn (M, SK,) S|ng|e

Aggregator threshold
M
%

signature
o, = Sign(M, SK,)




Threshold Signatures

Signature Shares
\ Verifies

(Desmedt, CRYPTO 1987)

o, = Sign(M, SK,) signature
shares
‘ :
9 ] e One threshold
o, S|gnM SK,) Single signature
Aggregator threshold J

o, = Sign(M, SK,)

/ signature

e One verification

Verify(o, M, PK) = trues/””
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Random Beacon via Threshold Signatures

Signature Shares Participants sign M = current time.
o, Verifies
o, = Sign(M, SK,) signature
shares
M M
%2 7

0,= S|gn (M, SK,) Random Output
: Leader = Single threshold
(Aggregator) signature

‘ .
o
-

o, = Sign(M, SK,)
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Random Beacon Throughput

e Random beacon throughput = signature scheme throughput (assuming good
network)

e High traffic at leader

e Multiple leaders = more throughput = more traffic :(

OEEN
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Random Beacon: Benefits of Threshold Signatures

Original Problems
e Last participant controls random output
e Dishonest participants refuse to reveal

Addressed using Threshold Signature Scheme
e Guaranteed to produce a signature, as long as k of the total n servers are
honest
e Each message has a unique threshold signature
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But... We Want a Scalable Random Beacon!

e Servers can be compromised
e Crucial to have a very large set of servers
e (Can we get a scalable threshold signature scheme?
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Shamir’s Secret Sharing

e Recover secret given k shares
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Shamir’s Secret Sharing

e Recover secret given k shares

1 Point - Point 2 Points - Line

48



Shamir’s Secret Sharing

e Recover secret given k shares

1 Point - Point 2 Points - Line

3 Points - Quadratic
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Lagrange Interpolation for Secret Sharing

Current implementations are inefficient
e Given k points, takes O(k?) time to recover secret

We use some known mathematical tricks to speed this up to
O(klog?k) time

Net result: We can aggregate a threshold signature from 100,000
participants in 20 seconds rather than 13 minutes.
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Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl
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Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

Machine Details:

ASUS ZenBook

Core i7-8550U CPU @ 1.80Ghz
16 GB of RAM

Ubuntu 16.04.5 LTS running inside VirtualBox 5.2.18 r124319
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O(k?) Naive Aggregation Time

25,000
20,000

15,000

Time (s)

10,000

5,000

16,384 32,768 65,536 131,072 262,144 524 288

Participants
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Time (s)

O(k log? k) Efficient Aggregation Time
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Time (s)

O(k log? k) Efficient Aggregation Time
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Threshold Signatures: Not just for Random Beacons

Applications to:

e Consensus algorithms (such as the one used
by Bitcoin)

e Securing HTTPs (every time you access a
webpage)
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Future Work

Implement random beacon protocol
e Threshold signature implementation works

Verifying signature shares is computationally expensive
e \We speed it up using batch verification
e Fast when almost all shares are valid, slow when many are not

More parallelization by decreasing traffic
e Optimistically guess subset of k honest servers
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Thank you!

Questions?



