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Why Scalability?

● Scalable threshold signature scheme 
○ Increased security
○ Scalable random beacon
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What is a Random Beacon?

A set of servers that periodically output a random number.

Random 
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What is a Random Beacon?

A set of servers that periodically output a random number.

● Some servers could maliciously “bias” the output
● Need unbiasability: servers cannot influence the output 

in their favor
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Contributions

● Elegant, scalable random beacon design
● For 100,000 participants, a random output can be produced every 20 seconds 

with only 3.05 MB of bandwidth (~5 minutes if many dishonest)
● Limiting factor is bandwidth: For 33 outputs × 3.05MB/output ≈ 100 MB, we 

can produce a random output every 0.6 to 10 seconds
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Participants Time Total Time Across 
System

Bandwidth

Randherd 512 6s >200s >100 MB

Aleator 33,000 4s 8s 1 MB



Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers
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Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
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Assuming they can agree on 
everyone’s random inputs
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Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

Cannot exclude any random inputs
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Approach: Combine all random inputs to produce random output
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Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1

R2

Rx

Random Output = X
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Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

c1 = C(R1) 

c2 = C(R2) 

cn = C(Rn) 

Compute own 
commitment
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Approach: Commit-then-reveal random inputs
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Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal
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Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal
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Solution: Use a threshold signature scheme
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Digital Signatures: Motivation

Alice Bob

M

M = “Hello, this is Alice.”
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Problem: Mallory can pretend to be Alice to Bob

Alice Bob

M’

Mallory
M’ = “Hello, this is Alice.”
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Problem: Mallory can tamper with Alice's messages

Alice Bob

M’

M

M = “Hello, this is Alice.”

Mallory
M’ = “Hello, this is John.”
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Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

Alice Bob

 

Bob has Alice’s 
public keyAlice has her own

 secret key
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Alice Bob

 

Bob has Alice’s 
public key

M = “Hello, this is Alice.”
σ = Sign(M, SKAlice)

Alice has her own
 secret key

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)
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Alice Bob

Verify(σ, M, PKAlice) = true

Bob has Alice’s 
public key

M

σ

M = “Hello, this is Alice.”
σ = Sign(M, SKAlice)

Alice has her own
 secret key

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)
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Naive Threshold Signatures

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)
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Naive Threshold Signatures

σ1 = Sign(M, SK1)
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Naive Threshold Signatures

σ1 = Sign(M, SK1)

M

σ1
Verify(σ1, M, PK1) = true

σ2 = Sign(M, SK2)

Verify(σ2, M, PK2) = true

σk = Sign(M, SKk)

Verify(σk, M, PKk) = true

Too large
● k signatures

Too much time 
● k verifications
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Threshold Signatures (Desmedt, CRYPTO 1987)

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)
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Threshold Signatures (Desmedt, CRYPTO 1987)

σ1 = Sign(M, SK1)

Verify(σ, M, PK) = true

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)

● One threshold 
signature

● One verification
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Random Beacon via Threshold Signatures

σ1 = Sign(M, SK1)

σ2 = Sign(M, SK2)

σk = Sign(M, SKk)
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Random Beacon Throughput

● Random beacon throughput = signature scheme throughput (assuming good 
network)

● High traffic at leader
● Multiple leaders ⇒ more throughput ⇒ more traffic :(

σ1

σ2

σn

σ = random 
output
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Random Beacon: Benefits of Threshold Signatures

Original Problems
● Last participant controls random output
● Dishonest participants refuse to reveal

Addressed using Threshold Signature Scheme
● Guaranteed to produce a signature, as long as k of the total n servers are 

honest
● Each message has a unique threshold signature
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But… We Want a Scalable Random Beacon!

● Servers can be compromised
● Crucial to have a very large set of servers 
● Can we get a scalable threshold signature scheme?

45



Shamir’s Secret Sharing

● Recover secret given k shares
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Shamir’s Secret Sharing

1 Point - Point

● Recover secret given k shares
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Shamir’s Secret Sharing

1 Point - Point 2 Points - Line

● Recover secret given k shares
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Shamir’s Secret Sharing

1 Point - Point 2 Points - Line 3 Points - Quadratic

● Recover secret given k shares
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Lagrange Interpolation for Secret Sharing

Current implementations are inefficient
● Given k points, takes O(k2) time to recover secret

We use some known mathematical tricks to speed this up to        
O(klog2k) time

Net result: We can aggregate a threshold signature from 100,000 
participants in 20 seconds rather than 13 minutes.
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Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl
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Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

Machine Details:
ASUS ZenBook
Core i7-8550U CPU @ 1.80Ghz
16 GB of RAM

Ubuntu 16.04.5 LTS running inside VirtualBox 5.2.18 r124319
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O(k2) Naive Aggregation Time
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O(k log2 k) Efficient Aggregation Time

54

Ti
m

e 
(s

)

Participants



55

O(k2) Naive Aggregation Time

Ti
m

e 
(s

)

Participants



56

O(k log2 k) Efficient Aggregation Time

Ti
m

e 
(s

)

Participants



Threshold Signatures: Not just for Random Beacons

Applications to:
● Consensus algorithms (such as the one used 

by Bitcoin)
● Securing HTTPs (every time you access a 

webpage)
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Future Work

Implement random beacon protocol
● Threshold signature implementation works

Verifying signature shares is computationally expensive
● We speed it up using batch verification
● Fast when almost all shares are valid, slow when many are not

More parallelization by decreasing traffic
● Optimistically guess subset of k honest servers
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Thank you!
Questions?
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