Aleator: Random Beacon via
Scalable Threshold Signatures

Robert Chen
Mentored by Alin Tomescu

PRIMES Computer Science Conference
10/13/18

Why Scalability?

e Scalable threshold signature scheme
o Increased security
o Scalable random beacon

What is a Random Beacon?

A set of servers that periodically output a random number.

Servers

R, Random
Output

R
n____J

What is a Random Beacon?
A set of servers that periodically output a random number.

e Some servers could maliciously “bias” the output

What is a Random Beacon?
A set of servers that periodically output a random number.
e Some servers could maliciously “bias” the output

e Need unbiasability: servers cannot influence the output
in their favor

Contributions

e Elegant, scalable random beacon design

e For 100,000 participants, a random output can be produced every 20 seconds
with only 3.05 MB of bandwidth (~5 minutes if many dishonest)

e Limiting factor is bandwidth: For 33 outputs x 3.05MB/output = 100 MB, we
can produce a random output every 0.6 to 10 seconds

Participants | Time Total Time Across Bandwidth
System
Randherd 512 6s >200s >100 MB

Aleator 33,000 4s 8s 1 MB

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R2

R
n

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R Assuming they can agree on
2 everyone’s random inputs

R
n

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R2 Random
Output

R
n____J

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Servers

R2

R
n ___J

Cannot exclude any random inputs

Random
Output

"

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output

Problem: Last participant controls random output

Servers

R2

R
n ___J

Random
Output

12

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R2

13

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R1
R2

[[

14

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

e omom Py
N

15

Naive Random Beacon: Combine all

Approach: Combine all random inputs to produce random output
Problem: Last participant controls random output

Servers

R2
- Random Output = X

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Compute own
commitment

c,=C(R,)

c,=C(R,)

Servers

c,=CR)

17

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

Cz

Cn

18

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

19

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Servers

Cys Cpy -o 5 C g — R1
_> R
C1’CZ""’Cn 2

Cys Cpy -v 5 C - Rn

20

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Verify all
Commitments Servers

¢, = C(R)), ...,cn=C(Rn)J g R,
¢,=CR,), ...,c,=C(R) & g R,

c,=C(R,), ...,c, =CR)« R

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs

Verify all
Commitments Servers

¢, =C(R,), .., ¢, =C(R) o g R,

c,=CR,),...,c,=C(R) Q/ g R, Random
. Output

c,=C(R,), ...,c, =CR)« R, |

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Verify all
Commitments Servers

¢, =C(R,), .., ¢, =C(R) o g R,

c,=CR,),...,c,=C(R) Q/ g R, Random
. Output

c,=C(R,), ...,c, =CR)« R, |

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R2

24

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R1
R2

[[

25

Naive Random Beacon: Commit-then-reveal

Approach: Commit-then-reveal random inputs
Problem: Dishonest participants refuse to reveal

Servers

R No Random Output
? Produced

Solution: Use a threshold signature scheme

* “ N
— 0, —. ‘ —— 0 = random output

o. /
n

(e.g., DFINITY blockchain)

Solution: Use a threshold signature scheme

* “ N
‘ — 0, — ‘ —— 0 = random output

o. /
n

(e.g., DFINITY blockchaing

Digital Signatures: Motivation

Alice

— [

] .

M = “Hello, this is Alice.”

Bob

29

Problem: Mallory can pretend to be Alice to Bob

Alice Bob

Mallory
M’ = “Hello, this is Alice.”

30

Problem: Mallory can tamper with Alice's messages

Alice Bob

— L

M = “Hello, this is Alice.”

)
Mallory
M’ = “Hello, this is John.”

31

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

Alice Bob

Bob has Alice’s
Alice has her own public key

secret key
32

Solution: Digital Signatures (Diffie-Hellman '76, RSA '78)

Alice Bob

M = “Hello, this is Alice.”
o = Sign(M, SK,,..)
Bob has Alice’s
Alice has her own public key

secret key
33

Solution: Digital Signatures

Alice

(Diffie-Hellman '76, RSA '78)

Bob

e

|

| o

J

M = “Hello, this is Alice.”
o = Sign(M, SK,,..)
Alice has her own
secret key

Bob has Alice’s
public key

34

Solution: Digital Signatures

Alice

(Diffie-Hellman '76, RSA '78)

Bob

e

|

| o

J

M = “Hello, this is Alice.”
o = Sign(M, SK,,..)
Alice has her own
secret key

Verify(o, M, PK,.) = truea/

Bob has Alice’s
public key

35

Naive Threshold Signatures

o, = Sign(M, SK,)

o, = Sign(M, SK,)

o, = Sign(M, SK)

36

Naive Threshold Signatures

g 5
01 »

\
o, = Sign(M, SK,)
M /
_—
0'2
\
o, Slgn (M, SK,)

g .
o
-

o, = Sign(M, SK,)

37

Naive Threshold Signatures

g — Verify(o,, M, PK,) = true &/
1

o, = Sign(M, SK,)
M _ _
O — o, Verify(o,, M, PK,) = true&/
o, Slgn (M, SK,)

g — Verify(a,, M, PK,) = true s/
Kk

o, = Sign(M, SK,)

38

Naive Threshold Signatures

o, = Sign(M, SK,)

o, Slgn (M, SK,)

o, = Sign(M, SK,)

Verify(a., M, PK,) = true

Verify(o,, M, PK,) = trues/_roo large

e Kk signatures
Too much time
e k verifications

Verify(o,, M, PK,) = true s/

39

Threshold Signatures (Desmedt, CRYPTO 1987)

Signature Shares

o, Verifies
e/ .
o, = Sign(M, SK,) signature
shares
M M
_— 02 _— _— O' _—
e/ e/

o, = Slgn (M, SK,) S|ng|e

Aggregator threshold
M
%

signature
o, = Sign(M, SK,)

Threshold Signatures

Signature Shares
\ Verifies

(Desmedt, CRYPTO 1987)

o, = Sign(M, SK,) signature
shares
‘ :
9] e One threshold
o, S|gnM SK,) Single signature
Aggregator threshold J

o, = Sign(M, SK,)

/ signature

e One verification

Verify(o, M, PK) = trues/””

41

Random Beacon via Threshold Signatures

Signature Shares Participants sign M = current time.
o, Verifies
o, = Sign(M, SK,) signature
shares
M M
%2 7

0,= S|gn (M, SK,) Random Output
: Leader = Single threshold
(Aggregator) signature

‘ .
o
-

o, = Sign(M, SK,)

42

Random Beacon Throughput

e Random beacon throughput = signature scheme throughput (assuming good
network)

e High traffic at leader

e Multiple leaders = more throughput = more traffic :(

OEEN
‘—' o —'©—'o—random

n

43

Random Beacon: Benefits of Threshold Signatures

Original Problems
e Last participant controls random output
e Dishonest participants refuse to reveal

Addressed using Threshold Signature Scheme
e Guaranteed to produce a signature, as long as k of the total n servers are
honest
e Each message has a unique threshold signature

44

But... We Want a Scalable Random Beacon!

e Servers can be compromised
e Crucial to have a very large set of servers
e (Can we get a scalable threshold signature scheme?

45

Shamir’s Secret Sharing

e Recover secret given k shares

46

Shamir’s Secret Sharing

e Recover secret given k shares

1 Point - Point

47

Shamir’s Secret Sharing

e Recover secret given k shares

1 Point - Point 2 Points - Line

48

Shamir’s Secret Sharing

e Recover secret given k shares

1 Point - Point 2 Points - Line

3 Points - Quadratic

49

Lagrange Interpolation for Secret Sharing

Current implementations are inefficient
e Given k points, takes O(k?) time to recover secret

We use some known mathematical tricks to speed this up to
O(klog?k) time

Net result: We can aggregate a threshold signature from 100,000
participants in 20 seconds rather than 13 minutes.

50

Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

51

Our Results: Scalable Threshold Signatures

Implementation Details:
Implemented in C++
Used libff and libntl

Machine Details:

ASUS ZenBook

Core i7-8550U CPU @ 1.80Ghz
16 GB of RAM

Ubuntu 16.04.5 LTS running inside VirtualBox 5.2.18 r124319

52

O(k?) Naive Aggregation Time

25,000
20,000

15,000

Time (s)

10,000

5,000

16,384 32,768 65,536 131,072 262,144 524 288

Participants

53

Time (s)

O(k log? k) Efficient Aggregation Time

25,000
20,000
15,000
10,000

5,000

16,384 32,768 65,536 131,072 262 144 524 288

Participants

54

32,768
16,384
8,192
4,096
2,048
1,024
512

Time (s)
3

O(k?) Naive Aggregation Time

32,768 65,536 131,072 262,144

Participants

55

Time (s)

O(k log? k) Efficient Aggregation Time

32,768
16,384
8,192
4,096
2,048
1,024
512
256
128
64

32

16

- N A

6,384 32,768 65,536 131,072 262 144 524 288
Participants

56

Threshold Signatures: Not just for Random Beacons

Applications to:

e Consensus algorithms (such as the one used
by Bitcoin)

e Securing HTTPs (every time you access a
webpage)

57

Future Work

Implement random beacon protocol
e Threshold signature implementation works

Verifying signature shares is computationally expensive
e \We speed it up using batch verification
e Fast when almost all shares are valid, slow when many are not

More parallelization by decreasing traffic
e Optimistically guess subset of k honest servers

58

Acknowledgements

| would like to thank:

My mentor, Alin Tomescu, for his support and guidance
Srini Devadas, for coordinating CS-PRIMES

My parents and family

MIT-PRIMES program

59

Thank you!

Questions?

