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Motivation

Motivating Questions

Example

If n points are selected from a circle, and all
(n
2

)
lines joining pairs of the n

points are drawn, then what is the maximum number of regions created in
the circle?

Example

What is the maximum number of “regions” determined by n hyperplanes
with dimension d − 1 in Rd?
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Motivating Questions

Example

If n points are selected from a circle, and all
(n
2

)
lines joining pairs of the n

points are drawn, then what is the maximum number of regions created in
the circle?

The maximum,
(n
4

)
+
(n
2

)
+
(n
0

)
, is achieved when no three lines intersect

at a point (general position).

Example

What is the maximum number of “regions” determined by n hyperplanes
with dimension d − 1 in Rd?

The maximum,
∑d

k=0

(n
k

)
, is achieved when the hyperplanes are taken in

general position.
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The Hyperplane Arrangement Problem

Preliminary Definitions

Definition

For a field K , define an n − 1 dimensional affine hyperplane of Kn as the
affine subspace {v ∈ Kn : a · v = b}.

Definition

A finite hyperplane arrangement is a finite set A of n − 1 dimensional
affine hyperplanes in a finite dimensional vector space Kn.

Definition

The dimension of an arrangement A in Kn denoted dim(A) is the integer
n. The rank of the arrangement denoted rank(A) is the dimension of the
space spanned by the normals to the hyperplanes.
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The Hyperplane Arrangement Problem

The Intersection Poset and Characteristic Polynomial

Definition

Define the intersection poset of an arragement A in V = Kn, denoted
L(A), as the set of all non-empty intersections of sets of hyperplanes
B ∈ A ordered by reverse inclusion.

Definition

Define the characteristic polynomial of an arrangement A as

χA(x) =
∑

s∈L(A)

µ(V , s)xdim(s).
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Deriving the Recursion Two Key Lemmas

Crosscut Theorem

Theorem

For a finite lattice L and some X ⊆ L\0̂ such that ∀s ∈ L\0̂, ∃t ∈ X such
that s ≥ t, then

µ(0̂, 1̂) =
∑
k

(−1)kNk ,

where Nk is the number of k-subsets of X whose join is 1̂.

Let A(L,K ) be the Möbius algebra of L over a field K with bilinear
multiplication s · t = s ∨ t, defined by the join.

Use the isomorphism from A(L,K ) to K#L =
⊕

t∈L Kt .∑
s≤t µ(s, t)t = δs → δ′s where δ′s is the identity of Ks

Then,
∏

t∈X (0̂− t) =
∑

s µ(0̂, s)s, and consider the coefficient of 1̂.
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Deriving the Recursion Two Key Lemmas

Significance of χA(x)

Theorem (Whitney)

For arrangement A in Kn, then

χA(x) =
∑
B⊆A

(−1)#Bxn−rank(B),

where the sum is taken over all sets of hyperplanes B of A with a
nonempty intersection.

For any element t ∈ L(A), [Kn, t] is a lattice.

Apply the crosscut theorem to [Kn, t] with X = B, the set of
hyperplanes in A that contain t.

Since dim(t) = n − rank(B), summing over all t gives the theorem.
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Deriving the Recursion The Recurrence Relation

Recurrence Relationship for the Characteristic Polynomial

Definition

For a hyperplane H ∈ A, denote A\H the arrangement without the
hyperplane H. Moreover, denote A/H the arrangement of nonempty
H ∩ J in the affine space H for J ∈ A.

Theorem

Let A be an arrangement in Kn and H be a hyperplane of A. Then,
χA(x) = χA\H(x)− χA/H(x).

Use Whitney’s theorem while considering if H is in B or not.

When H is not in B, we obtain χA\H(x).

When H is in B, we obtain (−1) · χA/H(x).
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Regions

Regions and Zaslavsky’s Theorem

Definition

For an arrangement A in Rn, define the number of regions, denoted r(A),
to be the number of connected components of Rn −

⋃
H∈AH. Similarly,

define b(A) as the number of relatively bounded regions of A.

Theorem (Zaslavsky)

r(A) = (−1)nχA(−1),

b(A) = (−1)rank(A)χA(1).

(−1)nr(A) and (−1)rank(A)b(A) satisfy the same recurrence as χA(x).

The equations holds when A = ∅, and the result follows.
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Finite Field Method

Finite Field Method

A useful method for computing the characteristic polynomial when the
hyperplanes are defined over Q.

Theorem

For an arrangement A in Rn defined over Q, then for sufficiently large
prime power q,

χA(q) = #

(
Fn
q −

⋃
H∈A

H

)
.

Aq, be the reduction of the hyperplanes modulo q. For a sufficiently
large prime power q, L(Aq) ∼= L(A)

For any t ∈ L(Aq) define f (t) = #t = qdim(t),
g(t) = #

(
t −

⋃
u>t u

)
, and apply the Möbius Inversion Formula

Since f (t) =
∑

u≥t g(u), then g(t) =
∑

u≥t µ(t, u)qdim(u).

So, χA(q) = g(Fn
q) = #

(
Fn
q −

⋃
H∈AH

)
.
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Finite Field Method

Interesting Arrangements in Rn

Braid Arrangement: xi − xj = 0 and

χA(x) = x(x − 1)(x − 2) · · · (x − n + 1).

Shi Arrangement: xi − xj = 0, 1 and

χA(x) = x(x − n)n−1.

Catalan Arrangement: xi − xj = −1, 0, 1 and

χA(x) = x(x − n − 1)(x − n − 2) · · · (x − 2n − 1).

Linial Arrangement: xi − xj = 1 and

χA(x) =
1

2n

n∑
k=0

(
n

k

)
(x − k)n−1
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Concluding Remarks

Areas for Continued Study

Graph theoretic problems

Simplicial arrangements

Different classes of posets

Permutation enumeration
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