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@ Resolves the Stanley-Wilf conjecture
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Introduction

Motivation

@ Resolves the Stanley-Wilf conjecture

@ Bounds the complexity of an algorithm applied in motion
planning in robotics

@ Bounds the number of unit distances between vertices in a
convex n-gon
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Introduction

Definitions

Binary Matrix

A binary matrix is a matrix that has only Qs or 1's for entries.
They are also known as 0-1 matrices.
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Introduction

Definitions

Binary Matrix
A binary matrix is a matrix that has only Qs or 1's for entries.
They are also known as 0-1 matrices.

For convenience, we represent them with dots.
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Introduction

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if
they have the same dimensions and corresponding coefficient
satisfies Bjj < Aj;.
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Introduction

Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if
they have the same dimensions and corresponding coefficient
satisfies Bjj < Aj;.
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Introduction

Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if
some submatrix of A represents B. Otherwise, A avoids B.
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Introduction

Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if
some submatrix of A represents B. Otherwise, A avoids B.
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Introduction

Definitions (continued)

The weight of a binary matrix A is the number of one entries in A.
We denote it w(A).
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Introduction

Definitions (continued)

The weight of a binary matrix A is the number of one entries in A.
We denote it w(A).

The extremal function

Given a binary matrix A, we define ex (A, n) to be the largest
possible weight of an n x n binary matrix that avoids A. This
function is only defined if A is a nonzero matrix.
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Introduction

Examples and Facts

Let B be a k x 1 binary matrix of all ones. Then
ex(B,n) = n(k —1).
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Introduction

Examples and Facts

Let B be a k x 1 binary matrix of all ones. Then
ex(B,n) = n(k —1).
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Introduction

Examples and Facts (continued)

Let A and B be binary matrices such that A contains B, Then
ex (A, n) > ex(B,n).
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Introduction

Examples and Facts (continued)

If B is an 0-1 matrix, then ex (B, m + n) > ex (B, m) + ex (B, n)
for all m, n.
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Introduction

Examples and Facts (continued)

If B is an 0-1 matrix, then ex (B, m + n) > ex (B, m) + ex (B, n)
for all m, n.

Let M be an m x m matrix that avoids B, and let N be an n x n
matrix that avoids B.
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Introduction

Examples and Facts (continued)

If B is an 0-1 matrix, then ex (B, m + n) > ex(B, m) + ex (B, n)
for all m, n.
Let M be an m x m matrix that avoids B, and let N be an n x n

matrix that avoids B.
0 --- 0 0 --- 0

or

avoids B.
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Introduction

Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1 x 1 matrix of
a single 1 entry. Then ex (B, n) = Q(n).
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Introduction

Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1 x 1 matrix of
a single 1 entry. Then ex (B, n) = Q(n).
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Introduction

Results

_ r+c=2
Let A be an r x ¢ binary matrix. Then ex (A, n) =Q (n2 W(A>—1> .
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Introduction

Results

_ r+c=2
Let A be an r x ¢ binary matrix. Then ex (A, n) =Q (n2 W(A>—1> .

If Ais an r x ¢ 0-1 matrix with w(A) > r + ¢ — 1, then
ex (A, n) = Q(nP) for some p > 1.
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Introduction

Results

_ r+c=2
Let A be an r x ¢ binary matrix. Then ex (A, n) =Q (n2 W(A>—1> .

Corollary

If Ais an r x ¢ 0-1 matrix with w(A) > r + ¢ — 1, then
ex (A, n) = Q(nP) for some p > 1.

Lemma (CrowdMath, 2016)

If Ais an r x ¢ 0-1 matrix with w(A) > r + ¢ — 1, then
ex (A, n) = Q(nlog n).
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Furedi-Hajnal Limits

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every k x k permutation matrix P satisfies ex (P, n) < 2k* (’f)n
More importantly, ex (P, n) = ©(n)
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Furedi-Hajnal Limits

Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every k x k permutation matrix P satisfies ex (P, n) < 2k* (’f)n
More importantly, ex (P, n) = ©(n)

Furedi-Hajnal limit

If P is a binary matrix such that ex (P, n) = ©(n), then
iMoo 2P exists and is called the Furedi-Hajnal limit. We
denote it with ¢(P).

| A\
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Furedi-Hajnal Limits

More definitions

Distance Vector
In matrix P, the distance vector between entries P; ; and P, j, is
(2 —i1,J2 — j1)-
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Furedi-Hajnal Limits

More definitions

Distance Vector

In matrix P, the distance vector between entries P; ; and P, j, is
(i2 — i1, 2 = J1)-

r-repetition

| A\

A vector (x,y) is r-repeated in a permutation matrix P if (x,y)
occurs as the distance vector of at least r pairs of 1 entries.
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Furedi-Hajnal Limits

More definitions

Distance Vector

In matrix P, the distance vector between entries P; ; and P, j, is
(i2 — i1, j2 = j1)-

r-repetition

| \

A vector (x,y) is r-repeated in a permutation matrix P if (x,y)
occurs as the distance vector of at least r pairs of 1 entries.

These definitions also extend to d-dimensional 0-1 matrices.
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Furedi-Hajnal Limits

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have
c(P) = 2 O(k?*/3(log k)/3 /(log log k)'/3)
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Furedi-Hajnal Limits

Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have
c(P) = 2 O(k?*/3(log k)/3 /(log log k)'/3)

Lemma (Cibulka and Kyncl, 2016)
4log

Almost all k x k permutation matrices are |7k—repetition free.

oglog k
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Furedi-Hajnal Limits

Main result

Multidimensional permutation matrices

A d-dimensional k-permutation matrix is a d-dimensional matrix
such that every (d — 1)-dimensional cross section of it has exactly
a single 1 entry.

Theorem
Almost all d-dimensional k-permutation matrices are

<i‘;'|2§’;>-repetition free for d > 2.

A\
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Conclusions

Further Directions

@ Prove that ¢(P) = 2°(K%) for all k x k permutation matrices
P.
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@ Prove that ¢(P) = 2°(K%) for all k x k permutation matrices
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e Extend the known bounds for ¢(P) to d-dimensional
permutations.
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Conclusions

Further Directions

@ Prove that ¢(P) = 2°(K%) for all k x k permutation matrices
P.

e Extend the known bounds for ¢(P) to d-dimensional
permutations.

@ Find stronger upper and lower bounds on the extremal
function of a binary matrix based on its size and weight.
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