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Definitions

Binary Matrix

A binary matrix is a matrix that has only 0’s or 1’s for entries.
They are also known as 0-1 matrices.

For convenience, we represent them with dots. • •
• •

•

 =

0 1 1 0
1 0 0 1
0 1 0 0


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Definitions (continued)

Representation

Given two binary matrices A and B, we say that A represents B if
they have the same dimensions and corresponding coefficient
satisfies Bij ≤ Aij .

L1 =

 • •
• •

•

 L2 =

 • •
• •

• • •


L2 represents L1.
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Definitions (continued)

Containment and Avoidance

Let A and B be two binary matrices. We say that A contains B if
some submatrix of A represents B. Otherwise, A avoids B.

A =


•

•
• • •

• •
• • •

 B =

(
• •
• •

)
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Definitions (continued)

Weight

The weight of a binary matrix A is the number of one entries in A.
We denote it w(A).

The extremal function

Given a binary matrix A, we define ex (A, n) to be the largest
possible weight of an n × n binary matrix that avoids A. This
function is only defined if A is a nonzero matrix.
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Examples and Facts

Let B be a k × 1 binary matrix of all ones. Then
ex (B, n) = n(k − 1).

A =



• • • • • • •
• • • • • • •
• • • • • • •


B =


•
•
•
•


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Examples and Facts (continued)

Let A and B be binary matrices such that A contains B, Then
ex (A, n) ≥ ex (B, n).
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Examples and Facts (continued)

If B is an 0-1 matrix, then ex (B,m + n) ≥ ex (B,m) + ex (B, n)
for all m, n.

Let M be an m ×m matrix that avoids B, and let N be an n × n
matrix that avoids B.

M

0 · · · 0
...

. . .
...

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

N


or



0 · · · 0
...

. . .
...

0 · · · 0

N

M

0 · · · 0
...

. . .
...

0 · · · 0


avoids B.
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Examples and Facts (continued)

Let B be any nonzero binary matrix except for the 1 × 1 matrix of
a single 1 entry. Then ex (B, n) = Ω(n).

A =



• • • • • • • •
• • •
• • •
• • •
• • •
• • •
• • • • • • • •
• • • • • • • •


B =

 •


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Results

Lemma

Let A be an r × c binary matrix. Then ex (A, n) = Ω
(
n
2− r+c−2

w(A)−1

)
.

Corollary

If A is an r × c 0-1 matrix with w(A) > r + c − 1, then
ex (A, n) = Ω(np) for some p > 1.

Lemma (CrowdMath, 2016)

If A is an r × c 0-1 matrix with w(A) > r + c − 1, then
ex (A, n) = Ω(n log n).
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Furedi-Hajnal limit of permutations

Theorem (Marcus and Tardos, 2004)

Every k × k permutation matrix P satisfies ex (P, n) ≤ 2k4
(k2

k

)
n.

More importantly, ex (P, n) = Θ(n)

Furedi-Hajnal limit

If P is a binary matrix such that ex (P, n) = Θ(n), then

limn→∞
ex(P,n)

n exists and is called the Furedi-Hajnal limit. We
denote it with c(P).
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More definitions

Distance Vector

In matrix P, the distance vector between entries Pi1,j1 and Pi2,j2 is
(i2 − i1, j2 − j1).

r -repetition

A vector (x , y) is r -repeated in a permutation matrix P if (x , y)
occurs as the distance vector of at least r pairs of 1 entries.

These definitions also extend to d-dimensional 0-1 matrices.
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Recent bounds

Theorem (Cibulka and Kyncl, 2016)

For almost all permutations matrices P, we have
c(P) = 2O(k2/3(log k)7/3/(log log k)1/3).

Lemma (Cibulka and Kyncl, 2016)

Almost all k × k permutation matrices are 4 log k
log log k -repetition free.
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Main result

Multidimensional permutation matrices

A d-dimensional k-permutation matrix is a d-dimensional matrix
such that every (d − 1)-dimensional cross section of it has exactly
a single 1 entry.

Theorem

Almost all d-dimensional k-permutation matrices are(
2d log k
log log k

)
-repetition free for d > 2.
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Further Directions

Prove that c(P) = 2o(k2/3) for all k × k permutation matrices
P.

Extend the known bounds for c(P) to d-dimensional
permutations.

Find stronger upper and lower bounds on the extremal
function of a binary matrix based on its size and weight.
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