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Introduction to Chip Firing

4 0

0

2 1

1

0 2

2

1 0

3

[0, 0, 4]t [1, 1, 2]t [2, 2, 0]t [3, 0, 1]t

Ayush Agarwal Maps Between Critical Groups 2 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definitions for the Graph Case

Let there be vi chips on node i of our graph G . Define a chip
configuration, v = [v0, v1, .., vl ]

t ∈ Nl+1.

A firing on a graph G is defined by sending a single chip from a node
i to all of its neighbours.

Stable Configurations are chip configurations v < dC which do not
permit additional firings.

Recurrent Configurations are stable configurations v such that for all
chip-configurations w , selectively adding chips to w and stabilizing
yields v .
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Laplacian Matrix

A Laplacian Matrix, L(G ) = D − A, where D is the degree matrix such
that Dij = deg(node i) if i = j and Dij = 0 if i ̸= j . A is an adjacency
matrix such that Aij is the number of edges from node i to node j .

Define a dynamical firing on node i that sends v to v − ri , where ri
corresponds to the ith row of L(G ), the Laplacian Matrix of G . Let dC be
the diagonal of L(G ).

Ayush Agarwal Maps Between Critical Groups 4 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example of Graph Laplacian

3 2

1

L(G ) =

0 0 0
0 2 0
0 0 2

−

0 0 0
1 0 1
1 1 0

 =

 0 0 0
−1 2 −1
−1 −1 2


[0, 0, 4]t [1, 1, 2]t [2, 2, 0]t [3, 0, 1]t
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Critical Groups

Definition

Let G be a digraph on n vertices with global sink s. The critical group of
G is the group quotient:

K (G ) = Zn/im(Lt(G ))

Theorem

Let G be a digraph with a global sink. The set of all recurrent chip on G
is an abelian group under the operation (v ,w) → stab(v + w), and it is
isomorphic via the inclusion map to the critical group L(G ).
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Revisiting the Graph Example

L(G ) =

 0 0 0
−1 2 −1
−1 −1 2


K (G ) = Z/3Z

Recurrent Configurations:

[
1
1

]
,

[
0
1

]
,

[
1
0

]
Each recurrent must have order 3:
[1, 1]t is the zero recurrent of order 1
[0, 1]t has order 3 since stab([0, 3]t) = [1, 1]
[1, 0]t has order 3 since stab([3, 0]t) = [1, 1]
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Introduction to Representation Theory

A group G is a set of elements that are closed under a certain binary
operator (the group operation), associativity, identity, and invertibility.
For example, the 3rd roots of unity form a group under the operation
of normal multiplication.

A representation of a group G on a vector space V , is a
homomorphism or map p : G → GL(V ) such that:

p(g1)p(g2) = p(g1g2)

for all g1, g2 ∈ G

An explicit example for the cyclic group C3 with elements 1, g , g2 is:

1 →
[
1 0
0 1

]
g →

[
0 −1
1 −1

]
g2 →

[
−1 1
−1 0

]
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Analogy to the Group Case

For a representation V of the group G : Define the McKay-Cartan Matrix
to be C̃ = nI −M, where n is the dimension of V and:

χVχi =
∑

mijχj

The chip-firing game applies to any Z-matrices and we introduce the
McKay-Cartan marix here instead of the graph Laplacian Matrix.
The reduced McKay-Cartan Matrix can be defined as the submatrix by
removing the first row and column. In this way, the critical group is
defined analagously as:

K (V ) = Zn/im(C t(V ))

Ayush Agarwal Maps Between Critical Groups 9 / 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Abelian Group Case

In the case of abelian groups, we have a complete classification of the map
p and found an exact correspondance of p to regular covering maps on
graphs. From Reiner-Tseng, we also have a combinatorial interpretation of
the kernel of our map. In fact, we have discovered the following theorem:

Definition

The Cayley Graph of a group G with generating set S has elements of the
group as its node and edges between g and gs for elements s ∈ S . The
nodes of our Cayley Graph are the irreducible representations of G and the
edges correspond to the choice of our faithful representation V .

Theorem

There is a surjection of critical groups from K (V ) to K (ResGHV )
corresponding to the map p, a graph covering map on the Cayley Graphs
of each group.
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Cyclic Group Example

Let G = C6 =< g | g6 = e > and consider the representation
V = Vw2 ⊕ Vw , where Vwk sends g → wk where w6 = 1. Consider the
subgroup H = C2 and the regular covering can be depicted by:

1 2

3

45

6

1

2
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General Maps Between Critical Groups

Define the map p : Zl+1 → Zl ′+1, with standard matrix A, such that:

ResVi = ⊕W
⊕Aij

j

Theorem

The following diagrams commute:

Zl+1 Zl+1

Zl ′+1 Zl ′+1

p

C t(V )

C t(ResV )

p

Zl ′+1 Zl ′+1

Zl+1 Zl+1

pt
C t(ResV )

C t(V )

pt

Hence, we have a map, π : K (V ) → K (ResV ) on cosets:
π : u + im(C t(V )) → p(u) + im(C t(ResV ))
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Proof Outline

From characters, p corresponds to restriction of virtual
representations, considered in Zl+1

pt corresponds to induction of virtual representations in Zl ′+1.

Check that ResV1 ⊗ ResV ∼= Res(V1 ⊗ V ) (Commutativity with M)

Check that IndW1 ⊗ V ∼= Ind(W1 ⊗ ResV )
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The Symmetric Group

It is known that p is surjective as a linear map and also as a map of
cosets: p : K (Sn) ↠ K (Sn−1).

Whenever p is surjective as a linear map, pt must be injective as a
map of cosets:pt : K (Sn−1) ↪−→ K (Sn).

Induction and restriction of irreducible representations is
well-understood with the concept of Young Diagrams (Binary Matrix
for p).
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Symmetric Case Continued

Theorem from Gaetz

Let γ be the reflection representation of Sn and let p(j) denote the
number of partitions of the integer j . Then:

K (γ) ∼=
p(n)−p(n−1)⊕

i=2

Z/qiZ

where
qi =

∏
1≤j≤n,p(j)−p(j−1)≥i

j

Lemma

The kernel of our map, p, for γ is as follows:

ker(p) = (Z/nZ)p(n)−p(n−1)−1
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Future Work

Describe the kernels of our maps in terms of ”voltage critical groups,”
with some combinatorial structure (group elements in the graph case)

Give explicit formulas and/or bounds on critical groups for specific
representations of the symmetric group (Using repeated character
values and injectivity of pt)

Theorem from Gaetz

If χγ is real-valued, as in the symmetric group case, and χγ(c) is an
integer character value achieved by m different conjugacy classes, then
K (γ) contains a subgroup isomorphic to (Z/(n − χγ(c))Z)m−1

Investigate other potential maps such as dualization (commutes with
the same diagram)

Identify connections to chip firing
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