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Abstract

Given a planar graph G, we prove that there exists a tiling of a

rectangle by squares such that each square corresponds to a face of the

graph and the side lengths of the squares solve an extremal problem

on the graph. Furthermore, we provide a practical algorithm for calcu-

lating the side lengths. Finally, we strengthen our theorem by restrict-

ing the centers and side lengths of the squares to algebraic numbers

and explore the application of our technique in proving algebraicity in

packing problems.
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1 Introduction

The art of tiling is thousands of years old, but it still remains relevant. Ancient

builders used tilings to create intricate floor patterns and complex mosaics that

complement the aesthetics of buildings. Tilings are not only created, but also

found in the natural world. Regular patterns similar to tilings have been found in

molecular structures [12].

A tiling problem asks us to cover a given region with a set of tiles, completely

and with no overlap. Furthermore, each tile in the set is similar to some base tile,

most commonly a square. Although tiling problems seem to be solely geometric,

these problems have implications for various fields such as Complexity Theory

[2, 10], Mathematical Logic [14], and Molecular Chemistry [12]. Given these

implications, a method to encode the tilings into an easily analyzable “blueprint”

becomes necessary.

The most common “blueprint” for a tiling is its contact graph. Each vertex

of a contact graph corresponds to a square in the tiling, and two vertices are

connected by an edge if their corresponding squares share a vertex or an edge.

Creating a blueprint from a tiling is simple, but how do we reverse the process

and create a tiling from a “blueprint”? In Circle Packing (where the region is not

covered completely), the famous Koebe-Andreev-Thurston Theorem states that

for every connected simple planar graph G, there exists a circle packing whose

contact graph is G [13, 1]. O. Schramm explored the analog of the theorem

in square tilings and discovered a similar theorem using conformal maps [16].

Furthermore, he proved that the square tiling solves an extremal problem on the

contact graph. The use of conformal maps to solve extremal problems has been

further explored by M. Bonks [3].

The contact graph is not the only “blueprint” for a tiling. Brooks, Smith, Stone

and Tutte [5] constructed graphs where the vertices correspond to horizontal edges

of the square tiling, and two vertices are connected if there is a square with one

of them as the top edge and the other as the bottom edge. Then, borrowing

Kirchoff’s loop rule and junction rule from electrical networks, they constructed

tilings where all of the squares have different side lengths. In this paper, we

explore another type of “blueprint”, a planar embedding whose faces correspond

to squares in the tiling and the side lengths correspond to the oscillation of each

face. As shown by projects in the past years, the oscillation function is closely
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related to tiling harmonic functions [18] and electrical networks [7].

2 Extremal Problem

We introduce our extremal problem on a finite planar graph with technicality.

Definition (Graphs and boundaries). Let G = (V,E) be a planar, finite, con-

nected graph. Embed the graph in the complex plane C.

The set of faces F is the set of closed, bounded, connected components of

C \G.

The set of boundary vertices dV of G is the set of vertices that belong to

the unbounded connected component U∗ of C \ G. Furthermore, when we write

v ∈ f for some face f , we are considering the vertices both on the boundary and

in the interior of f .

Let A,B be disjoint, connected subsets of dV . The weight function w : V →
[0,∞) is a nonnegative function that satisfies w(v) = 1 for all v ∈ A, and w(v) = 0

for all v ∈ B. We call set A the top vertices, and set B the bottom vertices.

We now introduce the oscillation function on the planar graph and the quantity

we are hoping to minimize. The oscillation is a discrete version of the upper

gradient
∮
dw from analysis. Specifically, it is the lower bound to the upper

gradient of a particle traveling from wmin(v) to wmax(v) through any path.

Definition (Oscillation). The oscillation of a face f ∈ F is defined as

oscw(f) = max(w(v) : v ∈ f)−min(w(v) : v ∈ f).

Finally, the area of the weight w is defined as

Areaw =
∑
f∈F

oscw(f)2,

and the extremal area of (G;A,B) is defined as

Area(G;A,B) = inf(Areaw),

where the infimum is taken over all weights w.

We show that for any (G;A,B) defined as above, this extremal area can be

achieved by some weight function.
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Lemma 2.1. If w(v) > 1 for some v ∈ V , then there exists weight w′ such that

Aw′ < Aw.

Proof. Let S ⊂ V be the set of vertices with the maximum weight.

Let ε be a positive real number such that for v ∈ S, w(v)− ε > 1 and w(v)− ε
remains the largest weight in the graph.

Consider the weight function w′ such that w′(v) = w(v) − ε for v ∈ S and

w′(v) = w(v) for v 6∈ S. Since w(v) > 1, we have not changed the weight of

vertices on the “top and bottom edge”. Furthermore, the oscillation on faces

containing vertices v ∈ S is necessarily smaller. Therefore, w′ is a valid weight

function with a smaller area.

Theorem 2.2. Define (G;A,B) as above. There exists weight w such that Areaw =

Area(G;A,B).

Proof. By Lemma 2.1, all weight functions with w(v) > 1 do not produce mini-

mum area. Therefore, minimum area must be produced when w(v) ∈ [0, 1] for all

vertices v.

The set of such weights w is a compact space. By applying the Extreme

Value Theorem on Aw, the area function A must attain its minimum. The weight

function where A attains the minimum is the desired weight function.

Therefore, we define the extremal weight as the weight function that achieves

the minimum.

We are now ready to state our main theorem.

Theorem 2.3. Define (G;A,B) and F as above, and let w be the extremal weight.

There exists a square tiling Tf , indexed by F , of rectangle R = [0, l] × [0, 1] such

that Tf and Tg are in contact for all pairs of faces f, g ∈ F in contact, and Tf

has side length oscw,f for all f ∈ F .

The theorem will be proven at the end of Section 3.

Figure 1 is an example of an extremal weight function and its corresponding

tilling. The red vertices are the top vertices A, and the blue vertices are the

bottom vertices B. The numbers on the left are the weights on each vertex,

and the oscillations on the faces are, from left to right, 1, 13 ,
1
3 ,

1
3 , 1. Using these

oscillations, we find the tiling on the right, consisting of two 1 × 1 squares and

three 1
3 ×

1
3 squares.
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Figure 1: Extremal problem for a simple graph and its corresponding tiling

3 Duality

The extremal problem we consider is, loosely speaking, a dual of the extremal

problem proposed by Schramm [16].

Let (G;A,B) be defined as above, and consider its planar embedding as a

tiling of C \U∗ with polygons. Then, consider the contact graph G′ of this tiling.

Furthermore, let A′ be the faces containing vertex v ∈ A, and B′ be the faces

containing a vertex v ∈ B. In figure 2, the graph on the right is the contact graph

of that on the left.

0 0

1/3 1/3

2/3 2/3

11

1

1/3

1/3

1
1/3

Figure 2: The dual of the graph in Figure 1

Then, we find that our problem on (G;A,B) is similar to the extremal problem

Schramm considered on (G′;A′, B′). However, there are still major differences in

our problems. In particular, Schramm’s metric can assign any real value to oscf ,

while our values of oscf are evaluated from the vertices. Therefore, our problem

is more restrictive than the one Schramm considers.

Our extremal problem is a non-trivial addition to Schramm’s work because the

formulation with oscillations demonstrates that square tilings minimize important
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functions in analysis, such as tiling-harmonic functions [18]. Furthermore, square

tilings themselves may be considered as planar graphs. Elegantly, when we solve

the extremal problem on such a planar graph, the corresponding tiling is the

original square tiling.

Schramm [16] built additional structure on the planar graph to discover a

relationship between square tilings and his extremal problem.

Definition. Let G = (V,E) be a planar graph, with top vertices A and bottom

vertices B. Then, for a weight function w : V → [0,∞), let the norm of the weight

||w|| be the maximum sum of weights w(v) for any path from the bottom edge to

the top edge, and the normalized area of the weight is defined as

Areaw =
∑
v∈V

w(v)2

||w||2
.

Theorem 3.1 (Schramm’s tiling theorem [16]). Let w be the weight function

such that Areaw is minimal. Then, there exists a square tiling Tv, indexed by

V , of rectangle R = [0, l] × [0, ||w||] such that Tu and Tv are in contact for all

connected vertices u, v ∈ V , and Tv has side length w(v) for all v ∈ V .

Schramm’s theorem provides a new perspective that allows us to prove Theo-

rem 2.3. We will first establish the many apparent similarities between Theorem

2.3 and Schramm’s tiling theorem. Then, we will generate a tiling using Schramm’s

tiling theorem and assign weights based on the tiling. From this perspective, we

are able to exploit the geometry of the tilings and the apparent similarities to solve

the original extremal problem. Finally, we will show that the y-coordinates of the

vertices in the tiling correspond to the extremal weights of the planar graph.

Proof of Theorem 2.3. Let G = (V,E) be a planar graph. Consider the

contact graph G′ = (V ′, E′) of G. Let the top vertices A′ be the set of vertices

whose corresponding faces in G contain vertices in A, and the top vertices B′ be

the set of vertices whose corresponding faces in G contain vertices in B.

By Schramm’s tiling theorem, there is a weight function w′(v′) that solves

Schramm’s extremal problem on graph G′.

Notice that the area function is invariant when we multiply all values of w′(v′)

by a scalar. Therefore, by dividing w′ by ||w′||, we can assert without loss of

generality that ||w′|| = 1. By Schramm’s tiling theorem, this weight function

corresponds to some square tiling Tv′ of a rectangle R : [0, l]× [0, 1].
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We assign weights w(v) to our original graph using the y-coordinate of a point

on the square tiling, with the following five cases:

1. If a vertex v is inside a face, use any point inside the corresponding square.

2. If the vertex v is between two faces, use any point along the edge where

the two corresponding squares are connected. However, if v is a top vertex,

use the highest point among the points where the squares are connected.

Similarly, if v is a bottom vertex, use the lowest points among the points

where the squares are connected.

3. If the vertex v is between three faces, use the point where the three corre-

sponding squares meet.

4. If the vertex v is between four faces, then the four corresponding squares

are all mutually in contact. Thus, either the corresponding squares meet at

one point or one or more of the squares are degenerate. In the first case,

use the point where the four squares meet; in the second case, ignore the

degenerate squares and apply the first three cases.

5. If the vertex v is between five or more faces, then one or more of the cor-

responding squares must be degenerate. Ignore the degenerate squares and

apply the first four cases.

Figure 3: The vertices are color-coded to indicate which point is used.

In figure 3, each vertex of the original graph is assigned to a point on the tiling

based on the rules above. We claim that the weight function w created solves the

extremal problem on the original graph.

First, we show that the top vertices are assigned 1. All the faces containing

a top vertex correspond to top vertices in the contact graph. Thus, their corre-

sponding squares have their top edges at y = 1. Since a top vertex is along the

7



boundary, it must fall in cases 2 − 5. In all 4 cases, the top vertex is assigned a

weight of 1.

Similarly, the bottom vertices are assigned a weight of 0.

Then, we show that the oscillations are equal to the weights w′ on the con-

tact graph. Notice that the vertices on the top edge of a square are connected

to additional squares above or are the highest vertices; the vertices on the bot-

tom edge are connected to additional squares below or are the lowest vertices.

Therefore, at least one vertex on the face is assigned to the top edge of the

corresponding square and at least one is assigned to the bottom edge. Thus,

osc(f) = max(w(v) : v ∈ f)−min(w(v) : v ∈ f) = ymax − ymin, which is the side

length of the square. By Schramm’s Theorem, oscw(f) = w′(v′).

Furthermore, the area Schramm considers is equal to∑
v′∈V ′

w′(v′)2

||w′||2
=
∑
f∈F

osc(f)2,

which is the area we consider.

Finally, our problem involves assigning oscillations based on weights around the

boundary. This restricts the value of oscillations we can assign. Since Schramm’s

theorem gives the extremal values when we assign oscillations directly, the weights

are also extremal in the restricted case.

Thus, we have constructed a square tiling such that each square corresponds

to a vertex on the contact graph — a face on the original graph. Furthermore, we

have constructed a weight function that solves our extremal problem and corre-

sponds to the square tiling. Our proof by construction is complete. �

4 Calculating Extremal Weights

Because of the similarity between our extremal problem and Schramm’s as de-

scribed in Section 3, we are also able to apply previous results by Schramm to

calculate our extremal weight function.

Algorithm. Let G = (V,E), (G;A,B) be defined above. Suppose we want to

calculate the extremal weights with an error of ±ε.
1. Find the contact graph G′ = (V ′, E′), and the set of faces A′, B′ as described

in Section 3.
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2. Apply Schramm’s algorithm in [16] on (G′;A′, B′) to find the extremal

weights w′(v′) for all v′ ∈ V ′ with an error of ± ε
|V | .

3. Assign weights w(v) to the original vertices using the five cases described

in the proof of Theorem 2.3. This is the extremal weight function.

5 Algebraicity of Tilings

Although our algorithm is able to find an increasingly accurate approximation of

the weights, it does not compute the exact value. Moreover, the extremal prob-

lems associated with this paper and both the paper of Schramm [15] and Bonk [3]

are examples of mathematical optimization. In areas of mathematical optimiza-

tion, such as Linear Programming, the algorithms used to solve the optimization

problem, such as the Ellipsoid Method, only produce an approximation. Is an

algorithm that finds the exact value impossible?

Probably not. In this section we prove that the optimal weights are algebraic.

An algebraic number, solution of some polynomial

pn
qn
xn +

pn−1
qn−1

xn−1 + . . .+
p0
q0
,

can be stored by a computer as the array [pn, qn, . . . , p0, q0]. If the solution to

the extremal problem is algebraic, it can be expressed by a computer, intuitively

suggesting that an exact algorithm likely exists.

To prove Algebraicity of the side lengths, we apply a theorem by Alfred Tarski

regarding real closed fields.

Theorem 5.1 (Tarski 1951 [14, 17]). Let S be a first-order statement in the theory

of real-closed fields. If S is true in one real-closed field, then it is true in every

real-closed field.

Since both the real numbers and the algebraic numbers are real-closed fields,

if the square-tiling problem we solved can be expressed in first-order language and

proved in R, it is also true for the algebraic numbers, R ∩Q.

Our plan is to translate the statements of Schramm’s theorem into appropri-

ately constructed first-order statements and apply Tarski’s theorem to obtain the

truth of the theorem over algebraic numbers. We need to be careful with the

operators provided by a first-order statement in the theory of real-closed fields.
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Roughly speaking, we may use the usual logic operators and quantifiers so that

all variables in the statement are quantified, symbols from set theory, as well as

symbols from the theory of real-closed fields (1, 0,×,+,=, >). In particular, we

can only quantify over variables, not relations or sets.

With these tools, we are able to prove the algebraicity of our theorem. Notice

that by the proof of 3.2, the solution of the extremal problem follows from the

creation of the square tiling. Thus, we strengthen all of theorem 3.2 by proving

that a tiling with algebraic coordinates exists.

Theorem 5.2. Given a simple planar graph G = (V,E), there exists a square

tiling with contacts graph G, whose centers and side lengths are algebraic numbers.

Proof. We write the square tiling problem in first-order language as an elementary

statement. The lack of many operators make the language difficult to use, so we

will rewrite common operators in term of ones that are allowed.

We rewrite the statement a < b as b > a, the statement a ≤ b as ¬(a > b),

and the statement a ≥ b as ¬(b > a).

For constant positive integer powers, we rewrite xn as x× x× . . .× x, where

x is repeated n times.

For i ∈ V , let xi, yi represent the x- and y-coordinate of the center of square

i; let ai represent the side length of square i. For i, j ∈ V , we define the following

statement:

• Let Ei,j be the statement (4(xj − xi)2 = (ai + aj)
2 ∩ 4(yj − yi)2 ≤ (ai +

aj)
2) ∪ (4(yj − yi)2 = (ai + aj)

2 ∩ 4(xj − xi)2 ≤ (ai + aj)
2);

• Let Ni,j be the statement 4(xj −xi)2 > (ai + aj)
2 ∪ 4(yj − yi)2 > (ai + aj)

2;

• Let Ii be the statement 2xi ≥ ai ∩ 2yi ≥ ai ∩ 2xi ≤ 2w − ai ∩ 2yi ≤ 2− ai;

• Let Ci be the statement (4(x− xi)2 ≤ (ai)
2) ∩ (4(y − yi)2 ≤ (ai)

2).

The statements Ei,j ensure that the squares required to be adjacent by the

original theorem are indeed adjacent. The first clause checks if the squares are

stacked beside each other, and the second one checks if the squares are stacked on

top of each other.

The statements Ni,j ensure that the squares that cannot be adjacent according

to the theorem are not adjacent. The first clause checks if the squares are too far

away horizontally, and the second one checks if they are too far away vertically.
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The statements Ii ensure that every square is contained in the rectangle.

The statements Ci,x,y ensure that every point in R is covered by some squares.

Then, for each pair of (V,E), our theorem can be stated as

∃w, x1, . . . , x|V |, y1, . . . , y|V |, a1, . . . , a|V | ∈ R, (
∧

(i,j)∈E

Ei,j)

∩(
∧

(i,j)6∈E

Ni,j) ∩ (∀x, y(x > w ∪ x < 0) ∪ (y > 1 ∪ y < 0)→ I1 ∩ . . . ∩ I|V |)

∩(∀x, y(x ≤ w ∩ x ≥ 0) ∩ (y ≤ 1 ∩ y ≥ 0)→ C1 ∪ C2 ∪ . . . ∪ Cn).

In the statement, ∀(i, j) ∈ E is an abbreviation for enumerating all edges of

E; ∀(i, j) 6∈ E is an abbreviation for enumerating over all vertices vi, vj of V that

do not share an edge.

Since we have proven that the theorem is a true first-order statement in R, it

is also true in R ∩ Q. Having found an algebraic tiling, we assign weights using

the procedure in the proof of Theorem 2.3.

Tarski’s theorem is difficult to apply to square tilings because the square is not

smooth. As a result, statements that define whether two squares are in contact,

Ei,j and Ni,j , are especially lengthy. With smooth objects such as circles, the

application is much easier.

Brooks et. al were able to argue in [5] that the side lengths of square tilings are

not only algebraic but also rational. However, we approach the problem from a

different field than Brooks et. al. They instead built a connection between tilings

and electrical networks. Moreover, our approach can be applied to other theorems

in the field of packings and tilings.

6 Further generalizations regarding algebraicity

Tarski’s theorem can be further applied to theorems in packing problems. First, we

generalize circle packing theorem to circles in 2-dimensional Lp space, a function

space with a different definition of norm.

Definition (Circles in Lp space). Let p > 0. A circle in Lp space with center

(a, b) and radius r is the set of points (x, y) such that (x− a)p + (y − b)p = rp.
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We will apply the following theorem by M. Brandt and A. Harrington to prove

results regarding circles in Lp space.

Theorem 6.1 ([4, 11]). Let G = (V,E) be a finite planar graph and let K be a

region in R which is homeomorphic to the closed unit disk and whose boundary is

C1 smooth. Then there is a packing P = (Kv, v ∈ V ) such that G is the contact

graph of P up to isomorphism, and Kv is obtained from K through translation

and scaling.

If we can prove that disks in Lp (the region bounded by a circle in Lp) are

smooth and homeomorphic to the unit disk, we can prove that the circle packing

theorem can be generalized to circles in Lp space.

Figure 4: Unit circle in L2/3, L1, L3/2, L2, L3.

We notice in figure 4 that Euclidean circles and squares are circles in L2 and

L1, respectively. Thus, proving a theorem about circles in Lp space is a natural

generalization of the circle packing theorem and the Schramm’s tiling theorem.

Furthermore, we notice in figure 4 that when p ≤ 1 the circle is not smooth.

Therefore, we can only hope for smoothness when p > 1.

Theorem 6.2. Let G = (V,E) be a finite planar graph and let p > 1. Then there

is a packing P = (Kv, v ∈ V ) of circles in Lp space such that G is the contact

graph of P .
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Proof. Since smoothness does not change when an object is scaled or translated,

we will examine the circle centered at (0, 0) with radius 1. Such a circle has

formula

xp + yp = 1.

Implicitly differentiating in the first quadrant, we find

pxp−1 + pyp−1
dy

dx
= 0,

dy

dx
=

(
x

y

)p−1
.

The derivative
(
x
y

)p−1
is continuous when x, y > 0. Furthermore, since p−1 >

0, there is a horizontal tangent at (x, y) = (0, 1) since dy
dx = 0 and a vertical tangent

at (1, 0) since dy
dx approaches ∞.

Therefore, a circle in Lp is smooth when p > 1.

We prove that the disk is homeomorphic to the unit disk by constructing an

explicit homeomorphism.

Let f from the unit disk to the L2 disk be the mapping such that for every

point (x,mx) on the unit disk, f scales (x, y) by (mp+1)1/p

(m2+1)1/2
. For points (0, y) on

the unit disk, f is the identity mapping.

The inverse of f the mapping that scales (x,mx) by (m2+1)1/2

(mp+1)1/p
. Furthermore,

the scaling factor is continuous when m changes, and approaches 1 as m ap-

proaches infinity. Therefore, both f and f−1 are continuous maps, the disk in Lp

is homeomorphic to the closed unit disk.

Louder et. al proved that the circle packing theorem remains true when we re-

strict the centers and the radii to algebraic numbers [14]. A similar generalization

exists for our theorem.

Theorem 6.3. Let G = (V,E) be a finite planar graph and let p > 1 be a rational

number with an even numerator. Then there is a packing P = (Kv, v ∈ V ) of

circles in Lp space such that G is the contact graph of P and the center and radii

of every circle Kv is algebraic.

Proof. We rewrite positive integer powers xn as we did in Theorem 5.2, and rewrite

positive rational powers x
p
q by asserting ∃y yq = x and replacing all appearance

of x
p
q with yp.

We define the following statements:
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• Let Ri be the statement ri > 0. This ensures that the radii are positive.

• Let Ei,j be the statement (xi − xj)p + (yi − yj)p = (ri + rj)
p.

• Let Ni,j be the statement (xi − xj)p + (yi − yj)p > (ri + rj)
p.

Statements Ri ensure that the radii are positive. Ei,j states that two disks

Ki and Kj are tangent to each other: When the condition is satisfied, the point

(
rixj+rjxi

ri+rj
,
riyj+rjyi
ri+rj

), a “weighted average” of the two centers, lie on both circles

and is the point of tangency. Finally, since the shapes are convex, that is the

only point of contact. Similarly, Ni,j states that two disks Ki and Kj are not in

contact.

Then, our theorem is the statement

S = R1 ∩R2 ∩ . . . ∩Rn ∩ (
∧

(i,j)∈E

Ei,j) ∩ (
∧

(i,j)6∈E

Ni,j).

Since S is true in the language of real numbers, by Tarski’s theorem it is true

in the language of algebraic numbers.

In the case where p is a transcendental number, it is easy to see that the

theorem is not true. The case when p is algebraic but irrational remains neither

proven or disproven. This case may be explored further in future research.
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