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Abstract

A Lie algebra is a linear object which has a powerful homomorphism with a Lie group, an

important object in differential geometry. In previous work a construction is given that builds

a Lie algebra on a Dynkin diagram, a commonly studied structure in Lie theory. We expand

this definition to construct a Lie algebra given any simple graph, and consider the problem

of determining its structure. We begin by defining an alteration on a graph which preserves

its underlying graph Lie algebra structure, and use it to simplify the general graph. We then

provide a decomposition move which further simplifies the Lie algebra structure of the general

graph. Finally, we combine these two moves to classify all graph Lie algebras.



1 Introduction

A Lie group is a structure concerned with infinitesimal transformations, introduced by Sophus Lie in 1876 [4].

It is used for analyzing continuous symmetries of mathematical objects, giving it applications in differential

geometry as well as theoretical physics. However, Lie groups can be studied more simply by considering the

Lie algebras they give rise to. A Lie algebra is a linear object defined by a Lie group; every Lie algebra is

locally defined by the Lie group which gives rise to it, but Lie algebras often are easier to study as a large

amount of work has been done on linear objects.

Lie algebra is often considered in the context of representation theory, which studies algebraic structures

by considering their elements as linear transformations [3]. Representations are often useful in determining

important properties of algebraic structures. Additionally, if an algebraic structure is decomposable, we

can study it in terms of its decomposed parts, which allows us to only consider irreducible representations,

which are representations not describable as the direct sum of two nontrivial subrepresentations. Irreducible

representations are the building blocks of representation theory, and as such studying them can prove useful.

Models of representations, studied by Bernstein, Gelfand, and Gelfand in [1], are representations that

contain each irreducible exactly once. Models provide a classifiable structure which contains irreducibles,

which can provide information about the irreducibles themselves. Some models of representations for simply-

laced simple Lie algebras using Dynkin diagrams were studied by Khovanova in [6]. Her paper also introduces

a Lie algebra corresponding to a Dynkin diagram, which is a subalgebra of the graph algebra of the same

diagram.

The structures suggested in [6] can be extended to any simple graph. The aforementioned paper by

Khovanova [6] builds a Lie algebra based on a Dynkin diagram, a graph commonly considered in Lie theory.

In this paper we extend this work further by building and classifying Lie algebra structures defined by any

simple graph. We begin by defining our graph Lie algebra and some other terminology used in the paper

in 2. We then consider the basic structure of the graph Lie algebra in Section 3. We then define a graph

alteration which preserves the graph Lie algebra structure in Section 4, and use it to simplify the general

graph in Section 5. Then we determine a decomposition move that can be performed on many graphs in

Section 6. Finally, in Section 7, we use all of this information to succinctly classify graph Lie algebras.

2 Background

A simple graph G is a set of n = |G| vertices v1, . . . , vn and some number of edges where edges connect pairs

of distinct vertices, and no pair of vertices is connected by multiple edges. For concision, we will call this a

graph. A previous paper by Khovanova [5] defines the graph algebra A(G) as a unital algebra over C with n

generators e1, . . . , en, calleed vertex monomials, with the following properties:

• For all 1 ≤ i ≤ n, we have e2i = −1.
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• For all i 6= j, we have that eiej = −ejei if vi and vj are connected, and eiej = ejei otherwise.

Since an algebra is a vector space, we have a couple properties and operations of algebras which we are

considering:

• The dimension of an algebra is the number of monomials it contains. For example, A(G) has dimension

2n, one for each element of the power set {e1, . . . , en}.

• The center of an algebra is the set of elements which commute with every monomial. We say that

central monomials are monomials which are elements of the center.

• The direct sum of two algebras is the set of possible sums of elements from both algebras. We can use

the direct sum to decompose our graph algebra into the direct sum of smaller graph algebras, making

them easier to classify.

In [5], it is proven that every graph algebra is isomorphic to the graph algebra of the disjoint union of a

singleton vertices and b complete 2-vertex graphs for some a, b.

Whenever we have an algebra, we can extend it to a Lie algebra, but first we want to give a definition of

a Lie algebra. We follow [3].

A Lie algebra is a vector space L equipped with addition and a Lie bracket, which is a bilinear operation

L× L→ L, denoted (x, y)→ [x, y], satisfying the following properties for all x, y, z ∈ L:

• The bracket of two of the same element is 0: [x, x] = 0.

• The bracket satisfies the Jacobi Identity :

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

We can build a Lie algebra structure L′(G) on A(G), called an extended graph Lie algebra, by defining a

Lie bracket of two elements x and y of A(G):

[x, y] = xy − yx.

Definition 1. The graph Lie algebra L(G) is the minimal Lie subalgebra of L′(G) generated by the set

{e1, . . . , en}.

We can build a Lie algebra structure A(G) by defining the Lie bracket of two vectors:

Definition 2. The Lie algebra L′(G) is defined as the vector space A(G) equipped with addition and a Lie

bracket defined as the commutator of two elements:

[x, y] = xy − yx.
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Then the graph Lie algebra L(G) is the Lie subalgebra of L′(G) generated by the set {e1, . . . , en}.

The graph Lie algebra is the object of our study, and our goal is to classify them and determine their

structures. To do so, we define sets of alterations that can be performed on graphs resulting in graphs with

an isomorphic graph Lie algebra. This allows us to more precisely classify graph Lie algebras. We also

explicitly describe the graph Lie algebras of some famous graphs.

3 Structure of the Graph Algebra

Consider a set α of integers, each between 1 and n, inclusive. Then we define eα as the product of the vertex

monomials ei such that α contains i. This allows us to write every monomial as eα for some set α. Having

this notation, we can now determine the result of multiplying two monomials eα and eβ . We must first define

the symmetric difference of two sets α and β as

α	 β = (α ∪ β) \ (α ∩ β).

Using this definition, the product of any pair of monomials can be accurately described, as was mentioned

in [5]:

Lemma 1. For all monomials eα, eβ, the product eαeβ is equal to ±eα	β.

Now it is proved in [5] that a monomial eα is central if and only if for all vertices vi, there are an odd

number of integers j in α such that vi is connected to vj . This is the simplest way to identify central

monomials, which is instrumental in decomposing algebraic structures determined by graphs.

3.1 Dynkin Diagrams

The work in [6] considers graph Lie algebras of Dynkin diagrams, and describes them in terms of more

classically studied Lie algebras. This allows us to know the structure of any graph Lie algebra which can

be expressed in terms of Dynkin diagrams. Letting θ denote the Cartan involution, we have the following

theorem from [6]:

Theorem 2. If G is the Dynkin diagram of a simply-laced Lie algebra g, then L(G) is isomorphic to θ(g).

This gives us that L(An) = son+1, and L(Dn) = son × son, where son is the Lie algebra corresponding

to the special orthogonal group of matrices of size n. Table 1 gives the dimensions of all graph Lie algebras

of Dynkin diagrams.

graph G An Dn E6 E7 E8

dimension of L(G) (n2 + n)/2 n(n− 1) 36 63 120

Table 1: The dimensions of graph Lie algebras of Dynkin diagrams.
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va vb

−→

Figure 1: An example of swapping a graph. Here we swap about va with respect to vb.

4 Manipulating Graphs

In this section we define a graph alteration that preserves a graph’s underlying Lie algebra structure, which

can in turn be used to greatly simplify our graph Lie algebra structure.

We first say that we flip one vertex with another by changing whether they are connected by either

adding or removing an edge between them. We are now free to define a graph alteration with the intent of

proving it preserves the Lie algebra structure of a graph:

Definition 3. We say G is swapped about a vertex va with respect to a vertex vb connected to it by flipping

va with every vertex (not including va) which is connected to vb, as shown in Figure 1. The resulting graph

is denoted by aGb.

Now for the idea of a swap to bn isomorphism on A(G) from A(G) to A(aGb).

Let the monomials of A(aGb) be denoted by sα for subsets α of {1, . . . , n}. We define the swap isomor-

phism φ on the monomials of A(G) as follows:

• φ(eα) = sα, where a 6∈ α,

• φ(eαeaeβ) = sαsasbsβ , where a 6∈ α ∪ β.

Now to prove that φ is indeed an isomorphism, we begin by considering the graph algebra of G:

Theorem 3. For all pairs of connected vertices ea, eb in G, the function φ is an isomorphism from A(G)

to A(aGb).

Proof. We wish to prove that φ is an isomorphism from A(G) to A(aGb). Clearly A(G) and A(aGb) have

the same dimension, so we can prove that it is bijective simply by proving injectivity. To do so, we note

every monomial sα is mapped to only by eα when α does not contain a, and only by exactly one scalar

multiple of eαeb when α contains a. Now it suffices to prove that our isomorphism holds, or that for all

α, β ∈ {1, . . . , n},

φ(eα · eβ) = φ(eα) · φ(eβ).

To prove this, we simply need to consider whether or not α and β contain a:
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Case 1. Say that neither α nor β contain a. Clearly the subalgebras A(G \ ea) and A(aGb \ ea) are

isomorphic, so in this case our isomorphism must hold.

Case 2. Say that α contains a but β does not. Then we can represent eα as eα1eaeα2 . This gives us the

following:

φ(eα · eβ) = sα1
sasbsα2

sβ = φ(eα) · φ(eβ).

By the same logic, our isomorphism also holds when β contains a but α does not.

Case 3. Say that both α and β contain a. We can represent eα as eα1
eaeα2

and eβ as eβ1
eaeβ2

. We also

define k ∈ {1,−1} such that

eaeα2eβ1ea = −keα2eβ1 .

This gives us the following:

φ(eα · eβ) = φ(eα1eaeα2eβ1eaeβ2)

= −ksα1
sα2

sβ1
sβ2

= ksα1
sα2

sasbsasbsβ1
sβ2

= sα1
sasbsα2

sβ1
sasbsβ2

= φ(eα) · φ(eβ).

Therefore, our isomorphism holds for all pairs of monomials, and by extension holds in general, proving

the claim.

Now in order to realize the benefit of swaps, we must also prove that they preserve the Lie algebra

structure of a graph:

Lemma 4. For all pairs of connected vertices va, vb in a graph G, the graph Lie algebras L(G) and L(aGb)

are isomorphic.

Proof. It suffices to prove that φ is an isomorphism between the two. Since we have defined the Lie bracket

by only using operations in A(G), by Theorem 3 we have that φ : L′(G) → L′(aGb) is an isomorphism.

Therefore it suffices to prove that φ is bijective, or equivalently that both of the following statements are

true:

• For all vertices vc in G, φ(ec) is in L(aGb),

• For all vertices vc in aGb, there exists some x ∈ L(G) such that sc = φ(x).
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The first condition is trivial for all c 6= a, as φ(ec) = sc. When a = c, we have

2φ(ea) = 2sasb = [sa, sb] ∈ L(aGb).

The second condition is trivial for all c 6= a, as sc = φ(ec). When c = a, we have φ([eb, ea]/2) = sa,

completing the proof.

This theorem allows us to perform swaps on graphs while maintaining their underlying graph Lie algebra

structure, which is useful for classifying graph Lie algebras.

5 Simplifying Graphs using Swaps

To more easily perform a larger number of swaps, we introduce the lit-only sigma game, as seen in [2]. A

lighting is a graph, with some vertices being in a lit state and the rest being in an unlit state. In this

game, we are allowed to toggle any lit vertex v, which changes the state of every vertex connected to v, not

including v itself. We say that two lightings are equivalent if there is a sequence of toggles which changes

one of the lightings into the other.

Given a set S of vertices inG, we wish to define a lighting on which we perform toggles which correspond to

sequences of swaps on G. If we remove the vertices of S and the edges containing them from G, the resulting

graph is the disjoint union of some number of connected components. We call one of these components

homogeneous if every vertex in the component is either connected to every vertex in S or no vertex in S.

Consider the subgraph which is the disjoint union of all homogeneous components. The compact lighting

of S, denoted G(S), is this subgraph, where a vertex is lit if in G it is connected to each vertex in S. If S

contains a single vertex v, we can also write this as G(v). An example of a compact lighting is seen in Figure

2.

Now say we have some lighting χ, which is equivalent to G(S). Then the endgame of G by χ, denoted

G(S, χ), is the result when edges in G connecting elements of S to lit vertices in G(S) are removed, and

edges connecting elements of S to lit vertices in χ are added. We have an important lemma concerning the

relationship between this game and the process of performing swaps on graphs:

Lemma 5. For all graphs G, there is a sequence of swaps resulting in any given endgame of G.

Proof. It suffices to prove that for all sets S of vertices in G, there is a sequence of swaps from G to the

endgame of G by χ, where toggling a single vertex in G(S), say v, results in χ. To perform the sequence of

swaps described in the claim, we simply swap about each vertex in S with respect to v.

Now define an extended star as the disjoint union of at least 3 path graphs, along with one vertex O and

a set of edges connecting O to exactly one end vertex in each path graph. We also define a central vertex in

a tree as a vertex with degree at least 3, and for any central vertex v in a tree G, every path graph which
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(a) (b)

(c) (d)

S1 S2
v

Figure 2: Note first that (b) is the compact lighting of the set S = {S1, S2} in (a). Since the subgraph
G \S contains only one homogeneous component, (b) contains only one connected component. We can then
toggle v in (b), resulting in (c), proving that (b) and (c) are equivalent. Then (d) is the endgame of (a) by
(c), so by Lemma 5 there must be a sequence of swaps on (a) resulting in (d).

is a connected component of G \ v is called a leg of v. We define an arm more generally as a connected

component of G\v which is a path graph for any vertex v in a tree G. For concision, we always let O denote

the central vertex of an extended star, and let L1, L2, . . . denote the vertices of a leg L in increasing order

of distance from O, where L1 is connected to O. In this section, we play with toggles on a few graphs, and

prove that there is a sequence of swaps on any connected graph resulting in an extended star.

In order to succinctly prove that sequences of swaps exist between graphs, especially extended stars,

we can find endgames of graphs, which regularly involves toggling sequence consecutive vertices. Therefore

when we toggle the sequence of connected vertices Lx, . . ., Ly, we write Lx→y for the sake of concision.

We wish to also introduce some terms concerning the properties of lightings of extended stars. Let χ be

such a lighting. We say χ is normalized when O is lit and each leg contains at most one lit vertex. We also

say that the height of a leg in a normalized lighting is the shortest distance from the lit vertex of L to O,

where the distance between two vertices is the number of edges in the shortest path from one to the other.

If no vertex in L is lit, we assign it height 0. In order to make this definition more useful, we prove a lemma

which makes this lighting more prevalent:

Lemma 6. All lightings of extended stars with at least one lit vertex are equivalent to some normalized

lighting.

Proof. To prove this, we define a sequence of toggles resulting in a normalized lighting. First, if O is unlit, we

toggle the closest lit vertex to O until O is lit. Then consider some leg L with multiple lit vertices, assuming
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one exists. We toggle the second closest lit vertex to O in L until exactly 1 vertex in L is lit. Performing

this algorithm on each leg with multiple lit vertices results in a normalized lighting.

Define a shortened star as an extended star where each leg has length at most 4. We can use swaps to

simplify our study of extended stars to that of shortened stars in many cases:

Lemma 7. Say there are at least two vertices at distance 2 from some central vertex O in a tree G. Then

if there is a leg L of O with length l > 4, there is a sequence of swaps which removes it and replaces it with

two legs of length 4 and l − 4.

Proof. By Lemma 5, it suffices to prove that G(L5) is equivalent to a lighting of the same graph in which

the only lit vertices are O and L6 (assuming it exists). From this we only need to consider the connected

component of G(L5) containing O, since in the other component it is already true that only L6 is lit. From

the claim, there must some path O, M1, M2 where M1 is not in L. There must also be some vertex N

connected to O which is neither L1 nor M1, since O is central. To prove the stated equivalence we perform

toggles on G(L5) according to the following sequence of vertices:

L4→1, O, M1, N , O, L1, M2→1, O, L2→1, L3→2, L4→3, N , O, L1→2, M1→2, O, L1, M1, O.

Note that since O is toggled an even number of times, no unnamed vertex connected to O remains lit after

the given sequence of toggles.

We may now deal primarily with shortened stars, so we define a class of lightings such that the endgames

by these lightings are easier to swap into extended stars. We call a normalized lighting semi-reduced if at

most one vertex has height greater than 1, and reduced if it is semi-reduced and every leg has height at

most 2. We can prove that lightings of shortened stars are frequently equivalent to reduced or semi-reduced

lightings:

Lemma 8. For all lightings χ of a shortened star G, there is some semi-reduced lighting equivalent to χ.

Proof. Begin by normalizing χ. Then, if two legs L, M have heights greater than 2, we can reduce their

heights by 1 by toggling our lighting according to the sequence O, L1→l−1, M1→m−1. From this we have

that the number of legs with height greater than 1 is a decreasing monovariant so long as there are at least

two, proving the claim.

While it is a helpful fact in itself that all lightings of shortened stars are equivalent to semi-reduced

lightings, in many cases we can prove something a bit stronger:

Lemma 9. If there is a leg with length less than 4 in a shortened star G, then any lighting on G is equivalent

to some reduced lighting.
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Name Example Description

Type-1

A tree with three central vertices, at least two
of which are connected, such that the central
vertex on the path between the other two has
degree 3 and a leg of length 1.

Type-2 A tree with exactly two central vertices.

Type-3
A Type-2 intermediate graph where at least
one central vertex has degree 3 and legs of
lengths 2 and 4.

Figure 3: Descriptions of the intermediate graphs used in our sequences of swaps.

Proof. By Lemma 9, our lighting is equivalent to some semi-reduced lighting χ. We only need to consider

the case where there is a leg L with length l > 2 and height h > 2. If h = l, we toggle according to the

sequence Lh→2, O. Otherwise, L must have height 3 and length 4, and there is some other leg M with length

less than 4. Now if M has height 0, toggle according to the sequence O, L1→2, M1→m, O, L1, M1→m−1.

Otherwise, it has height 1, in which case we toggle according to the sequence L3→1, M1, O, L4→1, M2→1,

O. In this case, if m = 3, we then also toggle according to the sequence M3→1, O, resulting in a reduced

lighting.

Now endgames of graphs by reduced or semi-reduced lightings often have common characteristics, which

allows us to more easily study them. We define a few types of intermediate graphs which we encounter

throughout our manipulations in Figure 3. We also define the extensivity of an intermediate graph to be the

furthest distance between any two central vertices.

Now the goal of this section is to prove that there exists a sequence of swaps on any connected graph

resulting in an extended star. By attempting to prove this claim using induction, we encounter (n+1)-vertex

graphs with n-vertex subgraphs which are shortened stars. Therefore it makes sense to consider swaps on

such graphs:

Lemma 10. For all connected (n+1)-vertex graphs G with an induced n-vertex subgraph which is a shortened

star, there is a sequence of swaps on G resulting in either a Type-1 intermediate graph or a graph with at

most 2 central vertices.

Proof. Let v be the vertex which when removed turns the graph to a shortened star. Now consider the

lighting G(v). We now have two cases regarding this lighting:

Case 1. Say G(v) is equivalent to some reduced lighting χ. Say that there is a leg L with length l > 1 and

height 2. Then toggle the vertex O and take the endgame of this lighting. Then swap about O with respect

9



to v, then swap about v with respect to the vertices in the sequence L2→l, resulting in a Type-1 intermediate

graph. If χ does not contain a leg of height 2, simply take G(v, χ) and swap about O with respect to v.

Case 2. Now say G(v) is not equivalent to a reduced lighting. Then by Lemma 9, every leg has length 4,

and by Lemma 8, we have that G(v) is equivalent to some semi-reduced lighting χ which is not reduced.

Now say there is a leg L of height 4 in χ. Then toggling according to the sequence L4→2, O results in a

reduced lighting, contradiction. Therefore there is a leg L of height 3, and every other leg has height at most

1. Now say there is a leg M with height 0. Toggling our lighting according to the sequence O, L1→2, M1→4,

O, L1, M1→3 gives L height 1 and M height 3. This makes the number of legs with height 1 an increasing

monovariant so long as there exist legs of height 3 and 0. Therefore there is a sequence of toggles resulting

in a graph where one leg N has height 3 and the rest have height 1. Toggling this according to the sequence

O, N1→2 gives us a lighting whose endgame satisfies the conditions in the claim.

We now improve Lemma 10 by considering more graphs than the ones it originally describes:

Lemma 11. For all connected (n + 1)-vertex graphs with n-vertex subgraphs which are extended stars or

path graphs, there exists a sequence of connected swaps resulting in a Type-1 intermediate graph or a graph

with at most 2 central vertices.

Proof. Say that v is a vertex such that G \ v is either an extended star or a path graph. To prove the claim,

we simply need to consider possible structures of this subgraph:

Case 1. Say G \ v is a path graph. Then continue to toggle the second rightmost lit vertex in G(v) until

exactly one vertex is lit, at which point its endgame will have exactly one central vertex.

Case 2. Say G \ v is an extended star with multiple legs of length at least 2. By Lemma 7, there is a

sequence of swaps on G such that G \ v is a shortened star. By Lemma 10, this is sufficient to prove the

claim.

Case 3. Say that G \ v is an extended star with at most one leg with length greater than 2. Normalize the

lighting G(v). If every leg has height at most 1, then take its endgame and swap about O with respect to v.

Otherwise, there is some leg L with height h greater than 1. If every leg other than L has the same height

k, then toggle O if k = 1, then toggle according to the sequence Lh→1. Then continue to toggle the second

closest lit vertex to O until 1 vertex is lit, when the endgame of our lighting has exactly two central vertices.

Otherwise, there is always a leg M other than L with height 1. Then performing the sequence of toggles

O, L1→h−1, M1 reduces the height of L, making it a decreasing monovariant so long as it is greater than 1.

Once L has height 1, simply take the endgame of our lighting and swap about O with respect to v.

We now have another lemma which can help simplify our graph in more general cases:
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Lemma 12. Say that for some tree G there is a pair va, vb of vertices with arms L, M of length k for some

odd integer k. The graph G \ va consists of some number of connected components. Consider one of these

components other than L which does not contain vb, containing a vertex vc connected to va in G. There

exists a sequence of swaps removing the edge from va to vc and adding an edge from vb to vc.

Proof. Consider the path P = P1, P2, . . ., Px from the degree 1 vertex of L to the degree 1 vertex of M .

Consider the graph G(vc). We toggle according to the sequence Pk+1→x, Pk→x−1, . . ., P1→x−k. The endgame

of the resulting lighting is the graph described in the claim.

Now that we have simplified our graphs into these two categories, we consider another transformation

that can help to simplify them further. We must first consider again lightings on shortened stars:

Lemma 13. Any normalized lighting χ of a tree such that two legs L, M of some vertex O have height 1

and length k for some even integer k is equivalent to χ with vertices L1, M1 unlit.

Proof. If k = 2, toggle the lighting according to the sequence A1→2, B1→2, O, A1, B1, O. Otherwise k = 4,

and we toggle according to the following sequence:

A1→4, B1→4, O, A1→3, B1→3, O, A1→2, B1→2, O, A1, B1, O.

Since every leg of even length in a shortened star has length 2 or 4, these two cases are sufficient to prove

the claim.

Using this alteration on lightings, we can prove that there is a sequence of swaps on a tree which performs

a useful transformation:

Lemma 14. If in some tree G there is a pair of legs L, M of some central vertex O1 which both have length

k ∈ {2, 4}, there is a sequence of swaps removing the edges from L1 to O1 and M1 to O1 and adding edges

from L1 to O2 and M1 to O2 for any central vertex O2 6= O1.

Proof. It is sufficient to consider the case when the path from O1 to O2 contains no other central vertices.

Call this path P = P1, P2, . . ., Px. First swap about P1 = O1 with respect to the vertices in P2→x. Then

consider the lighting G(Px). By Lemma 13, since all sequences of toggles are invertible, G(Px) is equivalent

to the resulting lighting when L1 and M1 are changed to unlit in G(Px), which we denote χ. Then there

must be a sequence of swaps resulting in G(Px, χ). Then swap about P1 with respect to the vertices in the

sequence Px→2.

Now we wish to consider only trees with at most two central vertices, so we must prove that there is a

sequence of swaps on Type-1 intermediate graphs resulting in these:

Lemma 15. There is a sequence of swaps from any Type-1 intermediate graph G resulting in a graph with

at most 2 central vertices.
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Proof. Call our 3 central vertices va, vb, vc, where vc is on the path from va to vb, and va is connected to vc.

By Lemma 7 we can perform a sequence of swaps resulting in a Type-1 intermediate graph where no leg has

length greater than 4. Now if both va and vb have legs of length 3, by Lemma 12 we can move every other

leg in va to vb, completing the proof. Additionally, if one of va, vb has a leg of length 1 we can move each

of its legs to vc. Otherwise, there exists an external center v with no legs of even length. By Lemma 14, we

can move all but at most one length 2 leg and one length 4 leg from v to the other external center. Then

either we are done or v has degree 3. Now let S be the set of vertices at a distance 2 from v which are not

in legs of v. Consider the lighting G(S). Let L and M be the legs of length 2 and 4, respectively, and let vd

be the vertex connected to v not in a leg of v. We toggle according to the following sequence:

vd, L1→2, M1→2, vd, L1, M1, M3, v, M2, M4, M1, M3, M2.

Now if G has an extensivity of 2, or v = va, our endgame has 3 central vertices, 2 of which have legs of length

1, which by Lemma 12 is sufficient to prove the claim. Otherwise, since v and vc have legs of length 1 in our

endgame, by Lemma 12 the leg L can be removed from v and connected to vc. Now the vertex vd = M2 has

exactly two legs N , P of lengths 2 and 3. Now let ve be the vertex connected to vd in neither N nor P , and

let the set T consist of the vertices connected to ve other than vd. We take G(T ) and perform the following

sequence of toggles:

ve, vd, N1→2, P1→2, vd, N1, ve, vd, P2, P1.

This gives us one of two graphs, depending on the extensivity of the original graph G:

Case 1. If G has an extensivity of 3, we arrive at a graph with 3 central vertices, at least 2 of which have

legs of length 1. Then by Lemma 12 we are done.

Case 2. If G has an extensivity greater than 3, we arrive at a graph with 4 central vertices:

• The vertex va,

• The vertex vc, which has degree 4 and a leg with length 1,

• The vertex vb, which has degree 3, a leg of length 2, and is connected to vd,

• The vertex vd, which has degree 3, with a leg of length 1 and a leg of length 2.

By Lemma 12, we can remove the leg of length 2 from vd and add it to vc through some sequence of swaps.

In the resulting graph, vb has degree 3, and two legs of length 2. By Lemma 14, we can remove these legs

and add them to vc, resulting in a graph with 2 central vertices, va and vc.

It now suffices to consider trees with at most 2 central vertices:
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Lemma 16. For all Type-2 intermediate graphs G, there is a sequence of swaps resulting in an extended

star or a Type-3 intermediate graph.

Proof. First, by Lemma 7 we can remove legs with length greater than 4 and replace them with legs of length

at most 4. We then have a couple of cases concerning the legs of odd length in G:

Case 1. Say both central vertices have a leg of the same odd length. Then by Lemma 12 there is a sequence

of swaps resulting in an extended star.

Case 2. Say that there is a central vertex with no legs of odd length. Then by Lemma 14 we can move all

but at most one leg of length 2 and one leg of length 4 from this central vertex to the other, giving us a

graph satisfying the conditions in the claim.

Case 3. Say that one central vertex, which we call va, has some number of legs of length 3 but no legs of

length 1, and the other, say vb, has some number of legs with length 1 but none of length 3. By Lemma

12 we can move every leg except one leg of length 1 from vb to a vertex vc connected to a degree 1 vertex

of a length 3 leg connected to va. In the resulting graph there is a distance of two between va and vc, the

two resulting central vertices. Now by Lemma 7 we can remove all legs of length greater than 4 from va and

replace them with legs of length at most 4. If this results in va having a leg of length 1, by Lemma 12 we are

done. Otherwise, say there is a leg L of length 3 connected to va. Consider the set S of vertices connected

to vc not in the path from vc to va. Letting vd be the vertex connected to both va and vc, and M be some

vertex other than L1 and vd connected to va, which must exist since va is central, we perform the following

sequence of toggles on G(S):

vc, vd, va, M , L1, va, vd, vc, L2→1, va, M , vd, va, L1→2.

We then take the endgame of this lighting. The result is equivalent to removing a leg of length 3 from va,

and adding a leg of length 2 to va and adding a leg of length 1 to vc. This makes the number of legs with

odd length in va a decreasing monovariant. Therefore there is a sequence of swaps resulting in a graph where

one central vertex has no legs of odd length, which by Lemma 14 is sufficient to prove the claim.

We now simply need to consider swaps on Type-3 intermediate graphs, the final thread in our tapestry

of swaps:

Lemma 17. For all Type-3 intermediate graphs G, there is a sequence of swaps resulting in an extended

star.

Proof. First by Lemma 7 we only need to consider Type-3 intermediate graphs where every leg has length

at most 4. Say that va has degree 3 and legs L and M with lengths 2 and 4, and let vb be our other central

vertex. We have a different set of cases based on the extensivity of G and the legs of its central vertices:

13



Case 1. Say the extensivity of G is x > 1. Let S be the set of vertices connected to vb not on the path

P = P1, . . ., Pk from vb to va, and perform the sequence of toggles on G(S):

P1→k, L1→2, M1→2, va, L1, M1, M3, va, M2, M4, M1, M1, M3.

The endgame H of this graph has an extensivity of two and 2 central vertices, including va, which has degree

3 and two legs N and Q with lengths 2 and q > 1, and vc. Now let T be the set of vertices connected to vc

not on the path R = R1, R2, R3 from vc to va, and perform the following sequence of swaps on H(T ):

R1→3, N1→2, Q1→2, va, N2, Q2, R2→1, Q2→1, va, N1, R2, va, Q1→2.

Then the endgame of this lighting is an extended star.

Case 2. Say G has extensivity 1 and some leg of odd length. Let S be the set of vertices connected to vb

other than va. We perform the following sequence of toggles on G(S):

vb, va, L1→2, M1→2, va, L1, M1, M3, va, M2, M4, M1, M3, M2.

The endgame H of the resulting lighting is a tree with extensivity 2 and two central vertices vc and vd, where

vc has degree 3 and legs of length 1 and 2. Now say that vd has a leg N of length 3. Since it is central it

must also have some other leg P . Let T be the set of vertices connected to vc not on the path from vc to vd,

and let ve be the common vertex between vc and vd. Perform the following sequence of toggles on H(T ):

vc, ve, vd, N1, P1, vd, ve, vc, N2→1, vd, ve, P1, vd, N1→2.

The endgame of this lighting is the graph H with one leg of length 3 removed from vc and replaced with a

leg of length 2, and one leg of length 1 added to vd. This makes the number of legs of length 3 a decreasing

monovariant while maintaining an extensivity of 2 and the existence of a leg of length 1 on vd. Therefore

there is a sequence of swaps on G resulting in a tree with 2 central vertices and extensivity 2 which has no

legs of length 3, and a leg of length 1 on at least 1 central vertex. If there exists a leg of length 1 on both

central vertices, by Lemma 12 we are done. Otherwise one central vertex vc has no legs of odd length, and

by Lemma 14 we can move at most one leg of length 2 and one leg of length 4 from vc to vd, giving us either

an extended star or a Type-3 intermediate graph with extensivity greater than 1, which has already been

considered.

Case 3. Say G has extensivity 1 and no leg of odd length. By Lemma 14 either both central vertices have

an odd number of length 2 and length 4 legs or there is a sequence of swaps resulting in an extended star.

Let S be the set of vertices connected to vb other than va. We perform the following sequence of toggles on

G(S):

vb, va, L1→2, M1→2, va, L1, M1, M3, va, M2, M4, M1, M3, M2.

The endgame of the resulting lighting has two central vertices, one of which has an even number of legs of

even length and an odd number of legs of odd length, which by Lemma 14 is sufficient to prove the claim.
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Theorem 18. For all connected graphs, there exists a sequence of swaps resulting in either a path graph, a

shortened star, or an extended star where 1 leg has length greater than 4 and the rest have length 1.

Proof. We recursively perform swaps. Pick a 1-vertex subset of our graph. This is one of the two graphs

described. Now say we have an n-vertex subgraph which is one of the graphs described in the claim. Pick a

vertex connected to at least 1 of these vertices. Then by Lemmas 11, 15, 16, 17 there is a sequence of swaps

resulting in a tree with at most 1 central vertex. Then by Lemma 7 we are done.

6 Decomposing Graph Lie Algebras

In this section, we once again consider the mathematical structure of our graph Lie algebras, and prove that

in many cases they can be decomposed nicely into other graph Lie algebras.

6.1 Decomposing Graph Algebras

In order to decompose a graph algebra, we must first gather more information about its center. Consider a

monomial eα that is central in A(G). We then define a value fα as a scalar multiple of eα such that f2α = 1: fα = ieα if e2α = −1,

fα = eα otherwise.

We can then define a central idempotent cα = (1 + fα)/2. This idempotent allows us to write our graph

algebra as the direct sum of two other algebras:

A(G) = cα · A(G)⊕ (1− cα) · A(G)

In fact, a theorem from [5] makes this decomposition even more useful, by expressing each addend as its

own graph Lie algebra:

Theorem 19. For all central monomials eα in A(G) and integers i ∈ α, the algebras cα · A(G) and (1 −

cα) · A(G) are isomorphic to A(G \ vi).

Now proving a similar fact for graph Lie algebras requires us also to consider which monomials are

contained in it, whereas a graph algebra of an n-vertex graph always contains 2n monomials, each the

product of the elements of some subset of the power set of the set of vertex monomials. We begin this

consideration by constructing new monomials one by one:

Definition 4. The set C = {C0, . . . , Cd} of construction sets of G, where d = dimL(G) − n, is defined as

follows:
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• The set C0 is defined as the set of vertex monomials of L(G).

• The set Ck is defined as Ck−1 ∪ eα for some monomial eα in L(G) \ Ck−1 generated by taking the Lie

bracket of two elements of Ck−1 and multiplying by 1/2.

Now every element in each of these sets must be in L(G), by the nature of their construction. Therefore,

we have that Cd forms a basis of L(G), since |Cd| = dimL(G). Having defined these construction sets we

can now better describe the monomials in L(G):

Lemma 20. If there exists a vertex vi in G and a monomial eα in L(G) such that eαL(G) ⊆ L(G) and

eieα ∈ L(G \ vi), then for all monomials eβ in L(G), exactly one of eβ, eαeβ is in L(G \ vi).

Proof. Define a function of monomials in L(G) as follows: e′β = eβeα if i ∈ α,

e′β = eβ otherwise.

Now let C ′k be the resulting set when every monomial eβ in Ck is replaced with e′β , and let C ′ be the

set {C ′0, . . . , C ′d}. We can now induct on the indices of elements of C ′. First, every element of C ′0 is in

L(G \ vi), since every element other than e′i is a vertex monomial which is not ei , and e′i = eieα, which from

the problem statement is in L(G \ vi). Now say that every element of C ′k is in L(G \ vi). The monomial

Ck \Ck−1 is the product of two anticommuting monomials eβ , eγ in Ck. Since eα is a central monomial, we

have

[e′β , e
′
γ ] = 2e′βe

′
γ = 2(eβeγ)′,

completing our inductive step. Therefore every element of C ′d is in L(G \ v1). Now since eαL(G) is a subset

of L(G), the set of monomials in L(G) which do not contain ei is the set C ′d. Suddenly we’re done, since no

monomial in L(G \ v1) contains ei.

This allows us to prove our decomposition move:

Theorem 21. For all central monomials eα and vertices vi in G such that eαL(G) is a subset of L(G) and

eαei is in L(G \ v), we have

L(G) = L(G \ vi)⊕ L(G \ vi).

Proof. To prove this theorem we describe a decomposition, and then prove that it is equivalent to the one

given. Consider the value cα as defined in subsection 6.1. The values cα and 1− cα are central idempotents

whose product is 0. Therefore our Lie algebra is the direct sum of cα · L(G) and (1− cα) · L(G). We prove

that L(G \ vi) is isomorphic to cαL(G).

Consider the function f : L(G \ vi)→ cα · L(G) where f(x) = cαx. This is the function that we prove is

an isomorphism. We begin by proving f is injective. Say cαx = cαy for some x, y ∈ L(G\v). Consider some
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monomial eβ . The only monomials which contain eβ when multiplied by cα are eβ and eαeβ . However, by

Lemma 20, exactly one of these is in L(G \ vi). Therefore the coefficient of eα in cαx is a constant nonzero

scalar multiple of the coefficient of some monomial in x. Therefore y must have the same coefficient of this

monomial. Therefore the coefficients of every monomial in L(G \ vi) are equal in x and y, so x = y.

We now wish to prove that f is surjective. Consider the value cαx for some x in L(G). Since from the

problem statement every monomial in L(G) is either a monomial in L(G \ vi) or an element of L(G \ v)

multiplied by fα as defined in subsection 6.1, we can say x = a+fαb where a and b are in L(G\vi). However,

since cαfα = cα, we have cα(a+ b) = cαx, so our function is surjective, and therefore a bijection.

Finally, we wish to prove that f is an isomorphism. Since we have proven it is a bijection, it suffices to

prove that it preserves the addition and Lie bracket operators. It clearly preserves addition, as cα(x+ y) =

cαx+cαy. Also, since cα is a central idempotent, we have cα[x, y] = [cαx, cαy]. Therefore f is an isomorphism.

By the same logic, we can prove that g(x) = (1− cα)x is an isomorphism from L(G \ vi) to (1− cα) · L(G),

completing the proof.

Now before we can find a graph that we can decompose with this theorem, we must make a brief remark

concerning anticommuting elements in L(G):

Lemma 22. If G is connected and has at least two vertices, then for all monomials eα ∈ L(G) there exists

a vertex vi in G such that [ei, eα] 6= 0.

Proof. If α is a one element set, then vi can be any vertex connected to the vertex whose vertex monomial

is eα. Otherwise, the construction set C0 does not contain eα, but some construction set does, implying

eα = [eβ , eγ ]/2 for some β, γ. Therefore [eβ , eα] 6= 0. Now eβ is the product of some number of vertex

monomials, each of which either commutes or anticommutes with eα. If each of them commuted with eα, we

would have [eβ , eα] = 0, contradiction. Therefore there is some vertex monomial ei such that [ei, eα] 6= 0.

We now introduce some notation concerning Lie brackets, which simplifies our description of objects

obtained by taking many Lie brackets:

Definition 5. Define a nested Lie bracket of a nonempty set x1, ..., xk recursively as

[x1, . . . , xk] = [[x1, . . . , xk−1], xk],

where [x1, x2] has its usual definition. When k = 1, define [x1] = x1.

We now wish to find a couple of extended stars which can be decomposed with this theorem:

Lemma 23. If an extended star G has two legs L, M of length 2k−1, where S is the set of vertices in these

legs at an odd distance from O, and p is the product of the vertex monomials of the vertices in S, then

pL(G) ∈ L(G).
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Proof. It suffices to prove that for all monomials eα the product peα is in L(G). By Lemma 22, there exists

some integer i such that [eα, ei] = 2eαei. We first prove that the monomial pei is in L(G). To do so, we need

to define a sequence of vertices which will be used in the proof. Let Sx be the sequence

L1→2x+1,M1→2x+1, O, L2→2x,M2→2x, O.

Now if k > 1 we say that S is the sequence Sk−1, . . ., S1, L1, M1, and otherwise we say it is simply L1,

M1. Now say that pei ∈ L(G). Then we can prove the claim by taking the following nested Lie bracket:

[eα, ei, pei] = 2eαeipei − 2peieαei = −4peα.

Therefore it suffices to prove that L(G) contains pei. We consider a few cases concerning the location of

the vertex vi:

Case 1. Say that vi = O. Let N be some leg other than L and M . We take the nested Lie bracket of the

sequence of vertex monomials of the sequence O, N1, S, N1 of vertices.

Case 2. Say vi is the point Lj . Let N be some leg other than L and M . We take the nested Lie bracket of

the sequence of vertex monomials of the following sequence of vertices:

O,N1, S,N1, L1, O, L2→1, L3→2, . . . , Lj→j−1.

Note that this construction works equally well when vi is on M .

Case 3. Say vi is the vertex Nj on some leg N . We then take the nested Lie bracket of the sequence of

vertex monomials of the sequence Nj→1, O, S, O, N1→j−1 of vertices.

We can now perform a decomposition move on many extended stars by the following theorem:

Theorem 24. If G is an extended star with two legs L, M of length 2k − 1, then its graph Lie algebra is

isomorphic to the direct sum of two copies of the graph Lie algebra of G \ L2k−1.

Proof. First define vi as L2k−1. We consider the product p of the vertex monomials of the vertices in L

and M which are an odd distance from O, which is a central monomial. By Theorem 21 and Lemma 23, it

suffices to prove that pei is in L(G \ L2k−1). If k = 1 this is trivial, as pei is a vertex monomial. Otherwise,

let Sx be the following sequence of vertices:

L1→2x+1,M1→2x, O, L2→2x,M2→2x−1, O.
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Now say that S is the sequence Sk−1, . . ., S1. Now say N is some leg other than L and M . We take the

nested Lie bracket of the vertex monomials of the following sequence of vertices:

O,N1, S,N1,M1, O,M1→2k−1.

This results in pei, proving the claim.

Now that we have considered how to manipulate graphs using both swaps and decomposition moves, we

are free to make a couple of general statements about graph Lie algebras in the next section.

7 Classifying Graph Lie Algebras and Future Work

In this section, we condense our work from previous sections and consider possible next steps. First, using

our work up to this point we can derive a nice, elegant theorem which classifies graph Lie algebras:

Theorem 25. All graph Lie algebras of connected graphs are isomorphic to the direct sum of some number

graph Lie algebras of path graphs and shortened stars, each of which has at most one leg of length 1 and one

leg of length 3.

Proof. Consider the graph Lie algebra L(G) of some graph G. By Theorem 18, there is a sequence of swaps

on G resulting in the disjoint union H of some number of shortened stars, path graphs, and extended stars

with 1 leg with length greater than 1. Since the graph Lie algebra of the disjoint union of two graphs is the

direct sum of their graph Lie algebras, by Theorem 24 we are done.

Now that we have this theorem, graph Lie algebras can be studied with much more ease, allowing for

further advances in Lie theory in the future. This could transpire in one of two ways. First, it could be

proven that all graph Lie algebras are isomorphic to the direct sum of Dynkin diagrams, proving that all

graph Lie algebras are semisimple, making their study quite uninteresting. However, using the methods we

have described in this paper, it is not possible to determine whether all graph Lie algebras are semisimple.

Consider the shortened star with four legs of length two. Assuming we can take the Lie brackets of every

pair of elements in any set, we can build the construction sets of any graph and in doing so determine its

dimension. Using a Java program, we used this method to prove that its dimension was 255. This makes

simplification to a Dynkin diagram impossible using our methods, which can only maintain the dimension

of the graph being considered or divide it by two, and Table 1 shows that no Dynkin diagram has a graph

Lie algebra with dimension 255. In fact, there exist many cases which exhibit this. This leaves open the

possibility that some graph Lie algebras are not semisimple, and are their own unique structures. If this is

the case, the results in this paper can be used to much more easily understand the set of new graphs which

are formed by defining graph Lie algebras. If these new Lie algebras do exist, the quicker we can understand
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them the sooner we will be able to spot them in nature, as many Lie algebras have been in fields such as

particle physics, and the sooner we can bring them into the real world.
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