
Classification of 7-Dimensional Unital

Commutative Algebras

Alexandria Yu

Mentor: Sherry Gong

Fourth Annual MIT PRIMES Conference

May 17, 2014

Alexandria Yu Mentor: Sherry Gong Fourth Annual MIT PRIMES ConferenceClassification of 7-Dimensional Unital Commutative Algebras



Algebras

Let K be a field (e.g. C).

Definition

A vector space A over K is called an algebra over K if A is

equipped with a product operation which is compatible with the

addition and scalar multiplication.
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Finite Dimensional Algebras

An algebra A is said to be finite dimensional if A is finite

dimensional as a vector space.

An algebra A is said to be unital if there exists an identity

I ∈ A such that I · a = a · I = a for all a ∈ A.

An algebra A is called commutative if ab = ba for all

a, b ∈ A.
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Examples of Finite Dimensional Algebras

Mn(C) : the set of all n × n matrices with entries in C.

The set Mn(C) is an algebra with the usual matrix addition,

scalar multiplication and matrix product.

The algebra Mn(C) is unital and finite dimensional over C
with dimension n2.

The algebra Mn(C) is not commutative if n > 1.
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Examples of Finite Dimensional Algebras

A: the algebra of all 3× 3 matrices of the following form:

 a b c

0 a b

0 0 a


for any a, b, c ∈ C.

A: a 3-dimensional unital commutative algebra over C.
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Homomorphisms of Algebras

A, B: two algebras over the field K .

Definition

A map f : A→ B, is called a homomorphism if

f respects scalar multiplication;

f respects addition;

f respects product.
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Isomorphisms of Algebras

A homomorphism f : A→ B, is called an isomorphism if it

is bijective.

Two algebras A and B are said to be isomorphic if there

exists an isomorphism f : A→ B.
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Structure of Finite Dimensional Algebras

Theorem

Let K be a field. If A is an n-dimensional unital algebra over K ,

then A is isomorphic to a subalgebra of Mn(K ), the unital algebra

of all n × n matrices over K .

Alexandria Yu Mentor: Sherry Gong Fourth Annual MIT PRIMES ConferenceClassification of 7-Dimensional Unital Commutative Algebras



Classification Problem

Problem

Classify unital finite dimensional commutative algebra up to

isomorphism.
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Discovering Examples Through Jordan Forms

Let A be a 7-dimensional unital commutative algebra over a field

K . A is a subalgebra of M7(K ). Assume that every element in A is

upper triangular and A contains an element with the following

Jordan form:

J =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


.
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Jordan Form

For any x and y in A, we have xJ = Jx and yJ = Jy . Hence

x =



0 a b 0 f g h

0 0 a 0 0 f g

0 0 0 0 0 0 f

0 0 0 0 c d e

0 0 0 0 0 c d

0 0 0 0 0 0 c

0 0 0 0 0 0 0


;
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Jordan Form

y =



0 k l 0 q r s

0 0 k 0 0 q r

0 0 0 0 0 0 q

0 0 0 0 m n p

0 0 0 0 0 m n

0 0 0 0 0 0 m

0 0 0 0 0 0 0


.
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Jordan Form

xy =



0 0 ak 0 0 aq + fm ar + bq + fn + gm

0 0 0 0 0 0 aq + fm

0 0 0 0 0 0 0

0 0 0 0 0 mc nc + md

0 0 0 0 0 0 mc

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.
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Jordan Form

Using the above formula and xy = yx , we obtain

a− c

f
=

k −m

q
.

Let

α =
a− c

f
=

k −m

q
.

We have
αr + n − l

q
=
αg + d − b

f
.

Let

β =
αr + n − l

q
=
αg + d − b

f
.
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A New Family of Algebras

For each pair of (α, β), A(α, β) is the 7-dimensional unital

commutative algebra of all matrices

x =



k a b 0 f g h

0 k a 0 0 f g

0 0 k 0 0 0 f

0 0 0 k c d e

0 0 0 0 k c d

0 0 0 0 0 k c

0 0 0 0 0 0 k


for all k , a, b, c , d , e, f , g , h ∈ K satisfying

a− c = αf , αg + d − b = βf .
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A Classification Problem

Problem

For two pairs of (α, β) and (α′, β′), when is A(α, β) isomorphic to

A(α′, β′)?
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Classification Theorem

Theorem

If α 6= 0 and β 6= 0, then A(α, β) is isomorphic to the

7-dimensional unital commutative algebra:

{k0I + k1x + k2x2 + k3y + k4y 2 + k5y 3 + k6z : ki ∈ K},

where x , y , z are the generators satisfying the relations:

x3 = 0, y 4 = 0, z2 = 0, xy = xz = yz = 0.

Corollary: If α 6= 0, β 6= 0, α′ 6= 0 and β′ 6= 0, then A(α, β) is

isomorphic to A(α′, β′).
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Proof of Theorem

Let

a =



0 1 0 0 1
α

β
α2 0

0 0 1 0 0 1
α

β
α2

0 0 0 0 0 0 1
α

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


;
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Proof

b =



0 0 0 0 − 1
α − β

α2 0

0 0 0 0 0 − 1
α − β

α2

0 0 0 0 0 0 − 1
α

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


;
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Proof

c =



0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


.
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Proof

We have

a3 = 0, b4 = 0, c2 = 0, ab = ac = bc = 0.

We can verify that

A(α, β) =

{k0I + k1a + k2a2 + k3b + k4b2 + k5b3 + k6c : ki ∈ K}.

We construct an isomophism by: a→ x , b → y , c → z .

QED
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Classification of Unital 7-dimensional Commutative

Algebras

For any α1, α2, α3, α4 in a field K , define A(α1, α2, α3, α4) to be

the 7-dimensional unital commutative algebra over K :

{k0I + k1x1 + k2x2 + k3x3 + k4x4 + k5B1 + k6B2 : ki ∈ K},

where x1, x2, x3, x4,B1,B2 are the generators satisfying the

relations:

(1) xiBj = 0 for all i and j ;

(2) BiBj = 0 for all i and j ;

(3) xixj = 0 for all i 6= j ;

(4) x2
i = B1 + αiB2 for all i ;

(5) x3
i = 0 for all i .
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A Classification Result

Theorem

Let K be an algebraically closed field. Let

α1, α2, α3, α4, β1, β2, β3, β4 be scalars in K . Assume that αi 6= αj

for some pair i and j. The unital commutative algebras

A(α1, α2, α3, α4) and A(β1, β2, β3, β4) are isomorphic if and only if

there exists an invertible matrix

(
q11 q12

q21 q22

)
and a permutation

σ of {1, 2, 3, 4} such that

βi =
q21 + q22ασ(i)

q11 + q12ασ(i)
.

A field K is said to be algebraically closed if every polynomial

equation with coefficients in K has a solution in K (e.g. C).
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Proof of the If Part (the Easy Part)

We denote the generators of A(β1, β2, β3, β4) by:

y1, y2, y3, y4,C1,C2.

We construct an isomorphism:

f : A(α1, α2, α3, α4)→ A(β1, β2, β3, β4)

as follows:

f (xi ) =
√

q11 + αiq12 yσ−1(i),

f (B1) = q11C1 + q21C2,

f (B2) = q12C1 + q22C2.

QED
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A Consequence

The following result gives an easily verifiable necessary condition

for two algebras in the family to be isomorphic.

Theorem

Assume that αi 6= αj for some pair i and j. If A(α1, α2, α3, α4) is

isomorphic to A(β1, β2, β3, β4), then there exists a permutation σ

of {1, 2, 3, 4} such that

det


β1 β1ασ(1) 1 ασ(1)

β2 β2ασ(2) 1 ασ(2)

β3 β3ασ(3) 1 ασ(3)

β4 β4ασ(4) 1 ασ(4)

 = 0.
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Proof

By the previous theorem, there exists an invertible matrix(
q11 q12

q21 q22

)
and a permutation σ of {1, 2, 3, 4} such that

βi =
q21 + q22ασ(i)

q11 + q12ασ(i)
.

Alexandria Yu Mentor: Sherry Gong Fourth Annual MIT PRIMES ConferenceClassification of 7-Dimensional Unital Commutative Algebras



Proof

It follows that the following linear system (with q11, q12, q21, and

q22 as the unknowns) has a nonzero solution:

β1 q11 + β1ασ(1) q12 − q21 − ασ(1) q22 = 0,

β2 q11 + β2ασ(2) q12 − q21 − ασ(2) q22 = 0,

β3 q11 + β3ασ(3) q12 − q21 − ασ(3) q22 = 0,

β4 q11 + β4ασ(4) q12 − q21 − ασ(4) q22 = 0.
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Proof

Hence

det


β1 β1ασ(1) 1 ασ(1)

β2 β2ασ(2) 1 ασ(2)

β3 β3ασ(3) 1 ασ(3)

β4 β4ασ(4) 1 ασ(4)

 = 0.

QED
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An Application

We give a new proof of the following result due to Professor

Poonen.

Corollary

Let K be an algebraically closed field. There exist infinitely many

non-isomorphic 7-dimensional unital commutative algebras over K .
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Sketch of Proof

Recall that any algebraically closed field has infinitely many

elements. We choose α1 = 1, α2 = α, α3 = α2, α4 = α3 and apply

the previous theorem.

QED
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Future Directions

I plan to study the question of classifying all 7-dimensional

unital commutative algebras.

We conjecture: there are only finitely many 7-dimensional

unital commutative algebras up to isomorphism outside the

family of 7-dimensional unital commutative algebras

A(α1, α2, α3, α4).

A more ambitious project: classify all finite dimensional unital

commutative algebras up to isomorphism.
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Thank You!
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