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Parking Functions

» There are (n+ 1)"~! classical parking functions of size n

Theorem (Cayley)
The complete graph K1 has (n+ 1)"~1 spanning trees.
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G is a digraph on vertices {0,1,...,n}
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For a nonempty subset / C {1,...,n}, and vertex i € I, let
d;(i) denote the number of edges from i to vertices outside /

A G-parking function is an n-tuple (b, ..., b,) such that for
any nonempty subset / C {1,2,..., n}, there exists i € | such
that b; < d/(i)

Example: (0,1,1) is a G-parking function, where G is the
graph above
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» Chebikin and Pylyavskyy constructed an explicit bijection
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Chebikin-Pylyavskyy Bijection

» Fix a proper set of tree orders I1(G)
» For each spanning tree T, let e(T, i) be the edge out of /i in T

» Given a subtree T and order 7(T), for each vertex i, order the
edges from i to T such that (i,j1) <q(7) (i,)2) if 1 <x(T) J2

Theorem (Chebikin, Pylyavskyy)

Map each spanning tree T to (b,..., b,), where b; is the number
of edges e from i such that e <,y e(T,i). This mapping is a
bijection between G'’s spanning trees rooted at 0 and G-parking
functions.
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Chebikin-Pylyavskyy Bijection - An Example

» G-parking functions: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(0,1,1)

» Spanning trees:

CNLIN N

(0,0,0) 10,00 > % (0,1,0) (0,0,1) 110 % 011 3
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» K[x1,...,xp] is the polynomial ring in variables xi, ..., x, on
a fixed field K of characteristic 0

» For each nonempty subset | C {1,...,n}, define
mp = HXidl(i)
icl
and let the ideal Zg = (my) as | ranges over all nonempty

subsets of {1,...,n}
bp

» (b1,...,bn) is a G-parking function if and only if xlb1 C X
does not vanish in K[x1,...,xn]/Z¢
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Monomial Ideals - An Example

2 2 2 2 2 0
> Tg = (X{, X5, X5, X{ X2, X1X3, X2X3 , X1 X3 X3)
» Non-vanishing monomials: 1, x1, X2, X3, X1 X2, X2X3

» G-parking functions: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(0,1,1)
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» For each nonempty subset | = {i1 < --- < ik} C{1,...,n},
define i
ﬁ7, = Xj; HXI- i)
i€l

and let the ideal Z¢ = (my) as | ranges over all nonempty
subsets of {1,...,n}

> (b1,...,by) is an almost-G-parking function if xfl - xbn does
not vanish in K[xi,...,xn]/Z¢
» Theorem (Postnikov, Shapiro, Shapiro)

When G = K41, the number of almost-G-parking functions
equals the number of (undirected) spanning forests of G.
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Almost- G-Parking Functions and Spanning Forests

» Given a super-proper set of tree orders ﬁ(G) for every
spanning forest F of G whose connected components are
rooted at their numerically smallest vertices, assign an order
m(F) such that i < j if:

» the root of i's connected component is smaller than the root
of j's connected component, or
» i and j are in the same connected component T, and i <z(T)j
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Almost- G-Parking Functions and Spanning Forests

» Fix a super-proper set of tree orders [1(G)

» Let e(F, ) be the edge out of i in the spanning forest F, if it
exists

» Given a subforest F and order w(F), for each vertex i, order
the edges from i to F such that (i, j1) <xr) (i,)2) if

1 <a(F) J2

» Map each spanning forest F whose connected components are
rooted at their numerically smallest vertices to (b, ..., by),
where b; is:

» the number of edges from i to vertices smaller than i in 7(F),
if 7 is the root of its connected component

> the number of edges e from i such that e <, (r) e(F,i),
otherwise

Theorem

This mapping is a bijection between almost-G-parking functions
and G's spanning forests whose connected components are rooted
at their numerically smallest vertices.



An Example

1 2
0 3
1 2
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This corresponds to the almost-G-parking function (0,2,1)



Modified Monomial ldeals

For each nonempty / C {1,...,n}, choose any k; € | and let
N di(i
M) = X, Hx,- 0
iel
Let 77 = (/) as | ranges over all nonempty subsets of {1,...,n},
and let A = K[xq, ..., xn|/Z¢

Theorem
If G = Kpy1, then dim .A’G is independent of the choices of k.



Future Directions

Conjecture

dim fl’G is independent of the choices of k; for all choices of k
that preserve the monotonicity of the ideal f’G (i.e. if I C J, then
for any i € |, deg, i) > deg, A7)).

It would also be interesting to find a combinatorial interpretation
of ideals in which the m; are modified by multiplication by more
than one variable
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