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Definitions

I Directed graph (digraph): collection of vertices and oriented
edges between pairs of vertices
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I Subtree of digraph: subgraph in which each vertex has a
unique path to a vertex known as the root
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Definitions

I Subforest of digraph: the union of one or more subtrees on
disjoint sets of vertices
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Parking Functions

I A classical parking function is an n-tuple of nonnegative
integers (b1, . . . , bn) that, when sorted in decreasing order, is
termwise less than (n, n − 1, . . . , 1)

I Analogy: n drivers on a one-way road with parking spots
0, 1, . . . , n − 1

I Example: (1,0,3,0)
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Parking Functions

I There are (n + 1)n−1 classical parking functions of size n

Theorem (Cayley)

The complete graph Kn+1 has (n + 1)n−1 spanning trees.
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G -Parking Functions

I G is a digraph on vertices {0, 1, . . . , n}
I For a nonempty subset I ⊆ {1, . . . , n}, and vertex i ∈ I , let

dI (i) denote the number of edges from i to vertices outside I
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I A G -parking function is an n-tuple (b1, . . . , bn) such that for
any nonempty subset I ⊆ {1, 2, . . . , n}, there exists i ∈ I such
that bi < dI (i)

I Example: (0, 1, 1) is a G -parking function, where G is the
graph above
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G -Parking Functions

I Theorem
The number of G-parking functions equals the number of spanning
trees of G rooted at 0.

I Classical parking functions are the special case G = Kn+1

I Chebikin and Pylyavskyy constructed an explicit bijection
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Chebikin-Pylyavskyy Bijection

I For every subtree T of G rooted at 0, assign an order π(T ) to
T ’s vertices. Let i <π(T ) j denote i being smaller than j in
this order

I An choice of orders Π(G ) is a proper set of tree orders if for
each subtree T rooted at 0:

I if an edge (i , j) ∈ T , then i >π(T ) j
I if t is a subtree of T , then the orders π(t) and π(T ) are

consistent

I Example: Breadth-first search order
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Chebikin-Pylyavskyy Bijection

I Fix a proper set of tree orders Π(G )

I For each spanning tree T , let e(T , i) be the edge out of i in T

I Given a subtree T and order π(T ), for each vertex i , order the
edges from i to T such that (i , j1) <π(T ) (i , j2) if j1 <π(T ) j2

Theorem (Chebikin, Pylyavskyy)

Map each spanning tree T to (b1, . . . , bn), where bi is the number
of edges e from i such that e <π(T ) e(T , i). This mapping is a
bijection between G’s spanning trees rooted at 0 and G-parking
functions.
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Chebikin-Pylyavskyy Bijection - An Example
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I G -parking functions: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),
(0,1,1)
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Monomial Ideals

I K[x1, . . . , xn] is the polynomial ring in variables x1, . . . , xn on
a fixed field K of characteristic 0

I For each nonempty subset I ⊆ {1, . . . , n}, define

mI =
∏
i∈I

x
dI (i)
i

and let the ideal IG = 〈mI 〉 as I ranges over all nonempty
subsets of {1, . . . , n}

I (b1, . . . , bn) is a G -parking function if and only if xb11 · · · xbnn
does not vanish in K[x1, . . . , xn]/IG



Monomial Ideals

I K[x1, . . . , xn] is the polynomial ring in variables x1, . . . , xn on
a fixed field K of characteristic 0

I For each nonempty subset I ⊆ {1, . . . , n}, define

mI =
∏
i∈I

x
dI (i)
i

and let the ideal IG = 〈mI 〉 as I ranges over all nonempty
subsets of {1, . . . , n}

I (b1, . . . , bn) is a G -parking function if and only if xb11 · · · xbnn
does not vanish in K[x1, . . . , xn]/IG



Monomial Ideals

I K[x1, . . . , xn] is the polynomial ring in variables x1, . . . , xn on
a fixed field K of characteristic 0

I For each nonempty subset I ⊆ {1, . . . , n}, define

mI =
∏
i∈I

x
dI (i)
i

and let the ideal IG = 〈mI 〉 as I ranges over all nonempty
subsets of {1, . . . , n}

I (b1, . . . , bn) is a G -parking function if and only if xb11 · · · xbnn
does not vanish in K[x1, . . . , xn]/IG



Monomial Ideals - An Example
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I IG = 〈x21 , x22 , x23 , x21x2, x1x3, x2x23 , x1x02x3〉

I Non-vanishing monomials: 1, x1, x2, x3, x1x2, x2x3
I G -parking functions: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0),

(0,1,1)
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Almost-G -Parking Functions

I For each nonempty subset I = {i1 < · · · < ik} ⊆ {1, . . . , n},
define

m̂I = xi1
∏
i∈I

x
dI (i)
i

and let the ideal ÎG = 〈m̂I 〉 as I ranges over all nonempty
subsets of {1, . . . , n}

I (b1, . . . , bn) is an almost-G-parking function if xb11 · · · xbnn does
not vanish in K[x1, . . . , xn]/ÎG

I Theorem (Postnikov, Shapiro, Shapiro)

When G = Kn+1, the number of almost-G-parking functions
equals the number of (undirected) spanning forests of G .
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Almost-G -Parking Functions and Spanning Forests

I We explicity construct a bijection between almost-G -parking
functions and spanning forests of G whose connected
components are rooted at their smallest vertices

I For every subtree T of G rooted at its numerically smallest
vertex, assign an order π̂(T ). Let i <π̂(T ) j denote i being
smaller than j in this order

I A choice of orders Π̂(G ) is a super-proper set of tree orders if
for each subtree T rooted at its numerically smallest vertex:

I if an edge (i , j) ∈ T , then i >π̂(T ) j
I if t is a subtree of T with the same root, then the orders π̂(t)

and π̂(T ) are consistent

I Example: Breadth-first search order



Almost-G -Parking Functions and Spanning Forests

I We explicity construct a bijection between almost-G -parking
functions and spanning forests of G whose connected
components are rooted at their smallest vertices

I For every subtree T of G rooted at its numerically smallest
vertex, assign an order π̂(T ). Let i <π̂(T ) j denote i being
smaller than j in this order

I A choice of orders Π̂(G ) is a super-proper set of tree orders if
for each subtree T rooted at its numerically smallest vertex:

I if an edge (i , j) ∈ T , then i >π̂(T ) j
I if t is a subtree of T with the same root, then the orders π̂(t)

and π̂(T ) are consistent

I Example: Breadth-first search order



Almost-G -Parking Functions and Spanning Forests

I We explicity construct a bijection between almost-G -parking
functions and spanning forests of G whose connected
components are rooted at their smallest vertices

I For every subtree T of G rooted at its numerically smallest
vertex, assign an order π̂(T ). Let i <π̂(T ) j denote i being
smaller than j in this order

I A choice of orders Π̂(G ) is a super-proper set of tree orders if
for each subtree T rooted at its numerically smallest vertex:

I if an edge (i , j) ∈ T , then i >π̂(T ) j
I if t is a subtree of T with the same root, then the orders π̂(t)

and π̂(T ) are consistent

I Example: Breadth-first search order



Almost-G -Parking Functions and Spanning Forests

I We explicity construct a bijection between almost-G -parking
functions and spanning forests of G whose connected
components are rooted at their smallest vertices

I For every subtree T of G rooted at its numerically smallest
vertex, assign an order π̂(T ). Let i <π̂(T ) j denote i being
smaller than j in this order

I A choice of orders Π̂(G ) is a super-proper set of tree orders if
for each subtree T rooted at its numerically smallest vertex:

I if an edge (i , j) ∈ T , then i >π̂(T ) j
I if t is a subtree of T with the same root, then the orders π̂(t)

and π̂(T ) are consistent

I Example: Breadth-first search order



Almost-G -Parking Functions and Spanning Forests

I Given a super-proper set of tree orders Π̂(G ), for every
spanning forest F of G whose connected components are
rooted at their numerically smallest vertices, assign an order
π(F ) such that i <π(F ) j if:

I the root of i ’s connected component is smaller than the root
of j ’s connected component, or

I i and j are in the same connected component T , and i <π̂(T ) j



Almost-G -Parking Functions and Spanning Forests

I Fix a super-proper set of tree orders Π̂(G )

I Let e(F , i) be the edge out of i in the spanning forest F , if it
exists

I Given a subforest F and order π(F ), for each vertex i , order
the edges from i to F such that (i , j1) <π(F ) (i , j2) if
j1 <π(F ) j2

I Map each spanning forest F whose connected components are
rooted at their numerically smallest vertices to (b1, . . . , bn),
where bi is:

I the number of edges from i to vertices smaller than i in π(F ),
if i is the root of its connected component

I the number of edges e from i such that e <π(F ) e(F , i),
otherwise

Theorem
This mapping is a bijection between almost-G-parking functions
and G’s spanning forests whose connected components are rooted
at their numerically smallest vertices.



Almost-G -Parking Functions and Spanning Forests

I Fix a super-proper set of tree orders Π̂(G )

I Let e(F , i) be the edge out of i in the spanning forest F , if it
exists

I Given a subforest F and order π(F ), for each vertex i , order
the edges from i to F such that (i , j1) <π(F ) (i , j2) if
j1 <π(F ) j2

I Map each spanning forest F whose connected components are
rooted at their numerically smallest vertices to (b1, . . . , bn),
where bi is:

I the number of edges from i to vertices smaller than i in π(F ),
if i is the root of its connected component

I the number of edges e from i such that e <π(F ) e(F , i),
otherwise

Theorem
This mapping is a bijection between almost-G-parking functions
and G’s spanning forests whose connected components are rooted
at their numerically smallest vertices.



Almost-G -Parking Functions and Spanning Forests

I Fix a super-proper set of tree orders Π̂(G )

I Let e(F , i) be the edge out of i in the spanning forest F , if it
exists

I Given a subforest F and order π(F ), for each vertex i , order
the edges from i to F such that (i , j1) <π(F ) (i , j2) if
j1 <π(F ) j2

I Map each spanning forest F whose connected components are
rooted at their numerically smallest vertices to (b1, . . . , bn),
where bi is:

I the number of edges from i to vertices smaller than i in π(F ),
if i is the root of its connected component

I the number of edges e from i such that e <π(F ) e(F , i),
otherwise

Theorem
This mapping is a bijection between almost-G-parking functions
and G’s spanning forests whose connected components are rooted
at their numerically smallest vertices.



An Example
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This corresponds to the almost-G -parking function (0,2,1)



Modified Monomial Ideals

For each nonempty I ⊆ {1, . . . , n}, choose any kI ∈ I and let

m̂′I = xkI
∏
i∈I

x
dI (i)
i

Let Î ′G = 〈m̂′I 〉 as I ranges over all nonempty subsets of {1, . . . , n},
and let Â′G = K[x1, . . . , xn]/Î ′G
Theorem
If G = Kn+1, then dim Â′G is independent of the choices of kI .



Future Directions

Conjecture

dim Â′G is independent of the choices of kI for all choices of kI
that preserve the monotonicity of the ideal Î ′G (i.e. if I ⊂ J, then
for any i ∈ I , degxi m̂

′
I ≥ degxi m̂

′
J).

It would also be interesting to find a combinatorial interpretation
of ideals in which the mI are modified by multiplication by more
than one variable
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