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WHAT IS A COXETER GROUP?

Definition
A Coxeter group is given by generators g1, g2, . . . , gn with
relations:

I g2
i = 1 for all i

I (gigj)
mij = 1 for all i, j

Some examples of Coxeter groups include the symmetric group
and reflection groups.
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COXETER DIAGRAMS
Coxeter diagrams can be used to visualize Coxeter groups.

I Each vertex represents a generator
I Edges show the relations between generators
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DIAGRAMMATICS

We can use Coxeter groups to create certain graphs.

I Each color represents a generator.
I The degree of each vertex is determined by the relations

between generators.
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K(π, 1) CONJECTURE

There is a conjecture known as the K(π, 1) conjecture regarding
the second homotopy group of the dual Coxeter complex.

I The dual Coxeter complex is a topological space associated
to each Coxeter group

I Elements of second homotopy group correspond to
aforementioned graphs

Proving this conjecture is equivalent to proving that all possible
graphs for a Coxeter group can be simplfied to the empty
graph using a sequence of allowed moves.
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MOVES ON DIAGRAMS

How can we simplify a graph?

3 allowable moves:

I Circle relation
I Bridge relation
I Zamolodchikov relations
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CIRCLE RELATION

We are allowed to add or remove empty circles of any color.

LALALALALALALAL
=
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BRIDGE RELATION

If we have two edges of the same color, we can switch around
which vertices they connect to, as long as we do not create any
new intersections.

=
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ZAMOLODCHIKOV RELATIONS (ZAM RELATIONS)

Zam relations vary for different coxeter groups. They are found
through the reduced expression graph for the longest element.

A3:

= = =
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OUR PROJECT

In our project, our primary goal was to prove the K(π, 1)
conjecture for specific Coxeter groups.

I I2(m)

I A3

I B3

I G×H
I Directed cases
I Working on An
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ADJACENT VERTICES

Theorem
We can remove adjacent vertices of the same type.

Proof.

→ →
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I2(m)

I2(m): m

Theorem
The family of Coxeter groups I2(m) satisfies the K(π, 1) conjecture.

Proof.
I Only 1 type of vertex so necesarily 2 adjacent vertices of

same type
I Use induction on number of vertices
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A3

A3:

Theorem
The Coxeter group A3 satisfies the K(π, 1) conjecture.

Strategy: Look at subgraph of blue color and use Euler
characteristic: V + F = E + 2 to find a small face.

I Delete the small face.

Using parity, the only nontrivial case is a blue face with 4
edges.
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A3

Any face with 4 edges can be transformed into ZAM for A3.

I Look at continuation of edges outside of face

I Use bridge relation to connect edges

I After using Zam transform, there must be adjacent vertices
of the same type.
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B3

B3:

Theorem
The Coxeter group B3 satisfies the K(π, 1) conjecture.

I We examine the subgraph of green color.
I Use Euler characteristic to find a small green face.
I Faces with odd number of edges necesarily have adjacent

vertices of the same type that can be removed. Using
parity and more complicated arguments, faces with 2 or 4
edges also necesarily have vertices that can be removed.

I Only nontrivial case is a green face with 6 edges. Vertices
of type green-red and green-blue alternate around face.



Introduction Diagrammatics Techniques Oriented Cases Conclusion

B3

B3:

Theorem
The Coxeter group B3 satisfies the K(π, 1) conjecture.

I We examine the subgraph of green color.

I Use Euler characteristic to find a small green face.
I Faces with odd number of edges necesarily have adjacent

vertices of the same type that can be removed. Using
parity and more complicated arguments, faces with 2 or 4
edges also necesarily have vertices that can be removed.

I Only nontrivial case is a green face with 6 edges. Vertices
of type green-red and green-blue alternate around face.



Introduction Diagrammatics Techniques Oriented Cases Conclusion

B3

B3:

Theorem
The Coxeter group B3 satisfies the K(π, 1) conjecture.

I We examine the subgraph of green color.
I Use Euler characteristic to find a small green face.

I Faces with odd number of edges necesarily have adjacent
vertices of the same type that can be removed. Using
parity and more complicated arguments, faces with 2 or 4
edges also necesarily have vertices that can be removed.

I Only nontrivial case is a green face with 6 edges. Vertices
of type green-red and green-blue alternate around face.



Introduction Diagrammatics Techniques Oriented Cases Conclusion

B3

B3:

Theorem
The Coxeter group B3 satisfies the K(π, 1) conjecture.

I We examine the subgraph of green color.
I Use Euler characteristic to find a small green face.
I Faces with odd number of edges necesarily have adjacent

vertices of the same type that can be removed. Using
parity and more complicated arguments, faces with 2 or 4
edges also necesarily have vertices that can be removed.

I Only nontrivial case is a green face with 6 edges. Vertices
of type green-red and green-blue alternate around face.



Introduction Diagrammatics Techniques Oriented Cases Conclusion

B3

B3:

Theorem
The Coxeter group B3 satisfies the K(π, 1) conjecture.

I We examine the subgraph of green color.
I Use Euler characteristic to find a small green face.
I Faces with odd number of edges necesarily have adjacent

vertices of the same type that can be removed. Using
parity and more complicated arguments, faces with 2 or 4
edges also necesarily have vertices that can be removed.

I Only nontrivial case is a green face with 6 edges. Vertices
of type green-red and green-blue alternate around face.



Introduction Diagrammatics Techniques Oriented Cases Conclusion

B3

Using idea that no adjacent vertices can be of same type, we
can manipulate this face into the B3 ZAM relation.

I Examine continuation of edges outside of face.

I Only 1 vertex of type red-blue inside face.
I Use bridge relation inside and outside of face to connect

edges.

I Use ZAM transformation and get adjacent vertices of the
same type.
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G×H

Theorem
If the K(π, 1) conjecture holds for groups G and H, then it holds for
the group G×H.

Strategy: Commutative Colors
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A1 ×H

Theorem
If two generators commute, then we can move the edges
corresponding to them independently.

Using this idea, we can solve the general case G×H by
essentially separating the graph formed by the generators of G
from the one formed by the generators of H.
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ORIENTED GRAPHS

We also solved some cases involving oriented graphs.
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ORIENTED A2

Oriented cases are much more difficult because we cannot
necessarily remove adjacent vertices of the same type.

Strategy: Look at the longest cycle
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FUTURE DIRECTIONS

We can take this project in multiple directions in the future.

I We could continue proving the K(π, 1) conjecture for other
Coxeter groups.

I We could generalize our proofs to classes of Coxeter
groups. (For example, we have a nearly-finished proof for
An.)

I We could also investigate oriented versions of the cases we
have already solved.
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