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» This process repeats infinitely. If the point of convergence
[e.e] oo
N Bk = () Ak isin S, Alice wins.
k=0 k=0
» Aset S is called («, §)-winning, if for the given (o, 3) and S,
Alice can ensure victory, regardless of how Bob plays.

» For our purposes, if S is not («, 8)-winning, it is («, §)-losing.



Schmidt Diagrams and Trivial Zones

We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.



Schmidt Diagrams and Trivial Zones

We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.

We can identify two " trivial zones" which are either winning or
losing for every set by examing Alice or Bob's ability to center all
of their intervals around a common point.



Schmidt Diagrams and Trivial Zones

We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.

We can identify two " trivial zones" which are either winning or
losing for every set by examing Alice or Bob's ability to center all
of their intervals around a common point.

Suppose that S = R\{x}. If 1 —2a+ af < 0, Bob can ensure
victory as follows:



Schmidt Diagrams and Trivial Zones

We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.

We can identify two " trivial zones" which are either winning or
losing for every set by examing Alice or Bob's ability to center all
of their intervals around a common point.

Suppose that S = R\{x}. If 1 —2a+ af < 0, Bob can ensure
victory as follows:

» Bob centers By around x. Let d = |By|.



Schmidt Diagrams and Trivial Zones

We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.

We can identify two " trivial zones" which are either winning or
losing for every set by examing Alice or Bob's ability to center all
of their intervals around a common point.

Suppose that S = R\{x}. If 1 —2a+ af < 0, Bob can ensure
victory as follows:

» Bob centers By around x. Let d = |By|.

» The farthest right Alice's leftmost endpoint can be is at
X+ % —da.
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We will explore the values of («, /3) for which a given set is
winning. We therefore define the Schmidt Diagram of S, D(S), as
the set of all (a, B) for which S is winning.

We can identify two " trivial zones" which are either winning or
losing for every set by examing Alice or Bob's ability to center all
of their intervals around a common point.

Suppose that S = R\{x}. If 1 —2a+ af < 0, Bob can ensure
victory as follows:
» Bob centers By around x. Let d = |By|.
» The farthest right Alice's leftmost endpoint can be is at
X+ % — da.

» The farthest left Bob’s center can then be is

X+ % —da+ %. Bob obviously can then maintain the same

center.
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Trivial Zones
Using similar logic, we can reach the following conclusions about
D(S):
» Sisdense <= D(S)# () = the region
{(ev, 8) : B = 51} is winning.
» Sisa countable dense set = D(S)={(o,B): 8> ﬁ}
» S is co-countable = D(S)¢ = {(a,B): <2 — é}
» SZR <= D(S)¢ #0 = the region
{(e, B) : B <2 — L} is losing.
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Here are a few lemmas for Schmidt Games:

>

If S'is (v, B)-winning, it is also (¢, 8")-winning for

aff =dp,a>d.

If Sis («, B)-winning, it is also (a(af)", B)-winning for
necW.

If S; C Sy, then D(S1) € D(S»).

D(51NS2) € D(51)ND(S2) and D(S51USz) 2 D(S1)UD(S,)
D(S€) C o(D(S)¢), where S¢ represents the complement of
S and o(x,y) = (y, x).

If Fis a locally finite set, S # R, and SU F # R, then
D(SUF) = D(S) = D(5\F).

If " = kS + c is the set S scaled by a factor of k and shifted
by ¢, then D(S’) = D(S).
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If Alice can disjoint her intervals from all the Z,'s beginning with a
certain k, she can win. If the set of k for which Bob can contain
his intervals in Z, is unbounded, he can win. Therefore:
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v

We can extend the losing region to

{(e, B) : B< tV (B =%, logyaB €Q)} for Fog and Fpp1.
Can we apply this extension to all other digits?

v

Can we show that the digit does not matter?

v

Can we find a complete Schmidt Diagram for F, ,,?

v

Can we find a complete non-trivial Schmidt Diagram for any
other set?
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