Affine Standard Lyndon words

Yehor Avdieiev Mentor: Alexander Tsymbaliuk

14/05/2023

Main Results

 Generalization of Leclerc's algorithm describing Lalonde-Ram's bijection

$$\ell: \Delta^+ \xrightarrow{\sim} SL = \{standard\ Lyndon\ words\}$$

from finite to affine Lie algebras

- Finding all *SL*-words for the "standard order" of simple roots in type $A_n^{(1)}$
- Finding the structure and some order properties for all SL-words for general order in type A_n⁽¹⁾
- Writing a Python code that founds all *SL-words* up to degree $k\delta$ (for any type, any order, and any k)

▶ Introduction

Simple Lie algebras and root systems

▶ \mathfrak{g} - Lie algebra: vector space with a skew-symmetric $[\cdot,\cdot]$: $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying

$$[[a, b], c] + [[b, c], a] + [[c, a], b] = 0 \quad \forall a, b, c \in \mathfrak{g}$$

- ▶ $\mathfrak{h} \subset \mathfrak{g}$ Lie subalgebra: vector subspace s.t. $[\mathfrak{h},\mathfrak{h}] \subseteq \mathfrak{h}$
- $ightharpoonup \mathfrak{h} \subset \mathfrak{g}$ ideal if $[\mathfrak{g},\mathfrak{h}] \subseteq \mathfrak{h}$
- g **simple** if it is not abelian and has no nonzero proper ideals
- ▶ Root system is a pair (V, Δ) , where V is a finite dimensional vector space over \mathbb{R} with a positive definite bilinear form (\cdot, \cdot) and $\Delta \subset V$ is a finite subset, such that:
 - 1. $0 \notin \Delta$; $\mathbb{R}\Delta = V$
 - 2. If $\alpha \in \Delta$, then $n\alpha \in \Delta$ if and only if $n = \pm 1$
 - 3. (String property). For any $\alpha, \beta \in \Delta$ we have:

$$\{\beta + j\alpha \mid j \in \mathbb{Z}\} \cap (\Delta \cup 0) = \{\beta + p\alpha, \dots, \beta, \dots, \beta - q\alpha\},\$$

where
$$p-q=2\frac{(\alpha,\beta)}{(\alpha,\alpha)}$$

Simple roots and Cartan subalgebra

- Let (V, Δ) root system, $f: V \to \mathbb{R}$ linear map s.t. $f(\alpha) \neq 0$ $\forall \alpha \in \Delta$. Then:
 - (i) $\alpha \in \Delta$ is positive if $f(\alpha) > 0$ and negative if $f(\alpha) < 0$
 - (ii) Such root is simple if it is not a sum of two positive roots
 - (iii) A highest root $\theta \in \Delta$ is such that $f(\theta) \geq f(\alpha)$ for all $\alpha \in \Delta$
- $ightharpoonup \Delta^+ = \{ all positive roots \}, and \Delta^- = -\Delta^+ = \{ all negative roots \}$
- $ightharpoonup \Pi \subset \Delta^+$ is the set of simple roots
- A Lie subalgebra ħ ⊂ g is Cartan if it satisfies the following two conditions:
 - 1) \mathfrak{h} is nilpotent, i.e $[\mathfrak{h}, [\mathfrak{h}, \cdots, [\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]] \cdots]] = 0$ for a finite number of brackets.
 - 2) $n_{\mathfrak{g}}(\mathfrak{h}) = \mathfrak{h}$, where $n_{\mathfrak{g}}(\mathfrak{h}) = \{x \in \mathfrak{g} | [x, \mathfrak{h}] \subset \mathfrak{h}\}.$

Root space decomposition

Let \mathfrak{g} - simple Lie algebra, $\mathfrak{h} \subseteq \mathfrak{g}$ - Cartan subalgebra. Then:

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha},$$

where

$$\mathfrak{g}_{\alpha} := \{ x \in \mathfrak{g} | [h, x] = \alpha(h)x \ \forall h \in \mathfrak{h} \}$$

Define a finite set of nonzero weights, called **roots of** g **relative to** h:

$$\Delta = \{\alpha \in \mathfrak{h}^* | \mathfrak{g}_\alpha \neq 0\} \setminus \{0\}$$

Above provides the root space decomposition of g:

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\Delta}\mathfrak{g}_lpha,\ extit{with } extit{dim}(\mathfrak{g}_lpha)=1\ oralllpha\in\Delta$$

SL-words

- ► I ordered finite alphabet, I* all finite length words in I
- For $u = i_1 i_2 \dots i_k \in I^*$, its length is |u| = k
- ▶ Get lexicographic order on I^* : $u = i_1 i_2 ... i_k < v = j_1 j_2 ... j_n$ iff $i_1 = j_1, i_2 = j_2, ..., i_r > j_r$, or $i_1 = j_1, i_2 = j_2, ..., i_k = j_k$ and n > k
- ▶ **Definition 1**: $\ell \in I^*$ is a **Lyndon word** if it is lexicographically smaller than all of its cyclic rearrangement
- lacktriangleright ${\mathfrak a}$ Lie algebra generated by a finite set $\{e_i\}_{i\in I}$ labelled by the alphabet I
- ▶ The standard bracketing of a Lyndon word ℓ is given inductively: $b[i] := e_i$ for $i \in I$, $b[\ell] := [b[m], b[n]]$, where $\ell = mn$ and n is the longest Lyndon word appearing as a proper right suffix of ℓ
- ▶ **Definition 2**: Lyndon word ℓ is **Lie-standard** w.r.t. $\mathfrak a$ if $b[\ell]$ cannot be written as a sum of bracketings of strictly larger Lyndon words

Leclerc's algorithm

- ▶ $\Pi = {\alpha_i}_{i \in I}$ set of simple roots, I our alphabet
- ▶ The weight of a word $w = i_1 i_2 \dots i_k \in I^*$ is defined by:

$$wt(w) = \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_k}$$

- **Proposition** (Lyndon): \mathfrak{g}_{α} is spanned by $\{b[\ell]|\ \ell$ Lyndon, $wt(\ell) = \alpha\}$
- ► **Theorem** (Lalonde-Ram, 1995): There is a bijection

$$\ell: \Delta^+ = \{ positive \ roots \} \xrightarrow{\sim} SL = \{ standard \ Lyndon \ words \}$$

such that $deg\ell(\alpha) = \alpha$

Explicit algorithm (Leclerc, 2004):

$$\ell(\alpha) = \max \left\{ \ell(\gamma_1) \ell(\gamma_2) \middle| \begin{array}{l} \alpha = \gamma_1 + \gamma_2 \\ \gamma_1, \gamma_2 \in \Delta^+ \\ \ell(\gamma_1) < \ell(\gamma_2) \end{array} \right\}$$

Affine Lie algebras

- g simple finite dimensional Lie algebra
- ▶ $\{\alpha_i\}_{i\in I}$ simple roots, $\theta\in\Delta^+$ the highest root
- $ightharpoonup \widehat{I} := I \sqcup \{0\}$
- ▶ The affine root lattice $\widehat{Q} = Q \times \mathbb{Z}$ with the generators $\{(\alpha_i, 0)\}_{i \in I}$ and $\alpha_0 := (-\theta, 1)$
- ▶ The affine root system $\widehat{\Delta} = \widehat{\Delta}^+ \sqcup \widehat{\Delta}^-$:

$$\widehat{\Delta}^+ = \left\{ \Delta^+ \times \mathbb{Z}_{\geq 0} \right\} \sqcup \left\{ 0 \times \mathbb{Z}_{> 0} \right\} \sqcup \left\{ \Delta^- \times \mathbb{Z}_{> 0} \right\}$$

$$\widehat{\Delta}^- = \left\{\Delta^- \times \mathbb{Z}_{\leq 0}\right\} \sqcup \left\{0 \times \mathbb{Z}_{< 0}\right\} \sqcup \left\{\Delta^+ \times \mathbb{Z}_{< 0}\right\}$$

The corresponding Lie algebra $\widehat{\mathfrak{g}}$ is a central extension of loops into \mathfrak{g} , i.e.

$$\widehat{\mathfrak{g}}\simeq \mathfrak{g}[t,t^{-1}]\oplus \mathbb{C}\cdot c$$
 as a vector space

Generalized Leclerc's algorithm

- **Proposition:** For simple roots, $\ell(\alpha_i) = [i]$. For other real $\alpha \in \widehat{\Delta}^{+, \text{re}}$:

$$\ell(\alpha) = \max \left\{ \ell_*(\gamma_1) \ell_*(\gamma_2) \middle| \begin{array}{l} \alpha = \gamma_1 + \gamma_2, \gamma_k \in \widehat{\Delta}^+ \\ \ell_*(\gamma_1) < \ell_*(\gamma_2) \\ [b[\ell_*(\gamma_1)], b[\ell_*(\gamma_2)]] \neq 0 \end{array} \right\}, \tag{1}$$

where $\ell_*(\gamma)$ denotes $\ell(\gamma)$ for real γ , and any one of $\ell_k(\gamma)$ for imaginary γ

Proposition: For imaginary $\alpha \in \widehat{\Delta}^{+,\mathrm{im}}$, the corresponding $\{\ell_k(\alpha)\}_{k=1}^{|I|}$ are the $|I|=rk(\mathfrak{g})$ lexicographically largest words from the list as in the right-hand side of (1) whose standard bracketings are linearly independent

▶ SL-words for the standard order $1 < 2 < 3 < \cdots < n < 0$ in type $A_n^{(1)}$

\overline{SL} -words for the standard order on $A_n^{(1)}$ with $n \geq 3$

- ▶ Define $\alpha_{i \to j} := \alpha_i + \alpha_{i+1} + \cdots + \alpha_j$, where letters are viewed as mod(n+1) residues placed on a circle.
- ▶ **Theorem:** The *SL*-words for $k \ge 1$:

$$k\delta \leftrightarrow \begin{cases} 10n\dots(r+2)23\dots r \underbrace{10n\dots(r+1)23\dots r}_{k \text{ times}} (r+1), \text{ for } 1 \leq r < n \end{cases}$$

$$k\delta + \alpha_{i \to j} \leftrightarrow \underbrace{10n \cdots 23 \dots (i-1)}_{k \text{ times}} i(i+1) \dots j, \text{ for } 2 < i \leq j$$

$$k\delta + \alpha_{1 \to i} \leftrightarrow 123 \dots n\underbrace{1023 \dots n}_{(k-1) \text{ times}} 1023 \dots i, \text{ for } i \neq 0$$

$$k\delta + \alpha_2 \leftrightarrow \underbrace{10n \dots 32}_{2} 2$$

\overline{SL} -words for the standard order on $A_n^{(1)}$ with $n \geq 3$

$$k\delta + \alpha_{2\rightarrow j} \leftrightarrow \begin{cases} \underbrace{\underbrace{\frac{10n\dots32}{^{\frac{k}{2}}\,\mathrm{times}}}_{\frac{k}{2}\,\mathrm{times}} 2\underbrace{\frac{10n\dots32}{^{\frac{k}{2}}\,\mathrm{times}}}_{\frac{k-1}{2}\,\mathrm{times}} 34\dots j\underbrace{\frac{10n\dots32}{^{\frac{k-1}{2}}\,\mathrm{times}}}_{\frac{k-1}{2}\,\mathrm{times}} 2, \ k-odd \end{cases}, \ \textit{for } j>2$$

$$k\delta + \alpha_{j\to i} \leftrightarrow 10n \dots j23 \dots (j-2) \underbrace{10n \dots (j-1)23 \dots (j-2)}_{(k-1) \text{ times}} 10n \dots (j-1)23 \dots i$$

$$\text{for } i+1 < j$$
 The rest of the SL-words: $\alpha_{i \to j} \leftrightarrow i(i+1) \dots j \text{ (for } i \leq j),$ $\alpha_{j \to i} \leftrightarrow 10n \dots j23 \dots i \text{ (for } i+1 < j),$
$$\delta \leftrightarrow \begin{cases} 10n \dots (r+2)23 \dots (r+1), \text{ for } 1 \leq r < n \\ 123 \dots n0 \end{cases}$$

SL-words for the standard order on $A_2^{(1)}$

The structure for $A_2^{(1)}$ is slightly different from the $n \ge 3$ case.

▶ **Theorem:** For $k \ge 1$:

$$k\delta + \alpha_1 \leftrightarrow 12 \underbrace{102}_{k-1 \text{ times}} 10$$

$$k\delta + \alpha_2 \leftrightarrow \underbrace{102}_{k \text{ times}} 2$$

$$k\delta + \alpha_0 \leftrightarrow \underbrace{102}_{k \text{ times}} 0$$

$$k\delta + \alpha_1 + \alpha_2 \leftrightarrow 12 \underbrace{102}_{k \text{ times}}$$

$$k\delta + \alpha_1 + \alpha_0 \leftrightarrow 10 \underbrace{102}_{k \text{ times}}$$

SL-words for the standard order for $A_2^{(1)}$

$$k\delta + \alpha_2 + \alpha_0 \leftrightarrow \begin{cases} \underbrace{102}_{\frac{k}{2} \text{ times}} 2 \underbrace{102}_{\text{times}} 0 & \text{, } k\text{-even} \\ \underbrace{102}_{\frac{k+1}{2} \text{ times}} 0 \underbrace{102}_{\text{times}} 2 & \text{, } k\text{-odd} \end{cases}$$

$$(k+1)\delta \leftrightarrow \begin{cases} 10 \underbrace{102}_{k \text{ times}} 2 \\ \underbrace{102}_{k \text{ times}} 0 \\ \underbrace{102}_{k \text{ times}} 0 \end{cases}$$

For the remaining roots: $\alpha_1 \leftrightarrow 1$, $\alpha_1 + \alpha_2 \leftrightarrow 12$, $\alpha_2 \leftrightarrow 2$, $\alpha_1 + \alpha_0 \leftrightarrow 10$, $\alpha_0 \leftrightarrow 0$, $\alpha_2 + \alpha_0 \leftrightarrow 20$, $\alpha_1 + \alpha_2 + \alpha_0 \leftrightarrow \begin{cases} 102 \\ 120 \end{cases}$

Both results are proved by induction on k using generalized Leclerc's algorithm

Structure and some order properties of SL-words for general order in type $A_n^{(1)}$

Key features of the general order in type $A_n^{(1)}$

- \blacktriangleright Alike the standard order, the core is to compute $\emph{SL-words}$ for the root δ
- ▶ The structure of the SL-words is defined by the words between δ and 2δ :

$$\ell(\alpha + k\delta) = \ell_1 \underbrace{\ell(\delta)}_{k-1 \, \mathrm{times}} \ell_2$$
, where $\ell(\alpha + \delta) = \ell_1 \ell_2$

- Using this fact we can prove some properties of the lex. order on SL-words
- ▶ **Lemma:** $\forall \alpha \in \widehat{\Delta}^{+,\text{re}}$, the sequence $\ell(\alpha), \ell(\alpha + \delta), \ell(\alpha + 2\delta), \ldots$ is monotonous
- ▶ Conjecture: For any $\alpha, \beta \in \widehat{\Delta}^{+,re}$ such that $\alpha + \beta \in \widehat{\Delta}^{+,re}$, have:

$$\alpha < \alpha + \beta < \beta$$
 or $\beta < \alpha + \beta < \alpha$

(analogue of Rosso's convexity property in finite types)

Python code that founds all SL-words up to degree $k\delta$

Python code

- ▶ Define function that computes standard bracketing of SL-words
- The code will work inductively. Suppose that we have a list of SL-words up to $k\delta$
- ▶ For each root between $k\delta$ and $(k+1)\delta$ find all possible variants of rewriting it into sum of two words from the list (knowing up to 2δ is enough)
- For real roots: count bracketing, find the largest word with the bracketing $\neq 0$
- For imaginary root: count bracketing, find the largest $|I| = rk(\mathfrak{g})$ words with linear independent bracketing

Thank you!

SLAVA UKRAINE! GEROYAM SLAVA!