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Background

Definition (Braid group B3)
The Artin braid group on 3 strands is

B3 := ⟨σ1, σ2 | σ1σ2σ1 = σ2σ1σ2⟩.

Let us denote by ρ a homomorphism that is defined as

ρ : B3 → S3,

where S3 is a symmetric group on a set of 3 elements and

ρ(σ1) := (12), ρ(σ2) := (23).

Definition (Pure braid group PB3)
Pure braid group PB3 is the kernel of ρ:

PB3 := ker(ρ).
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Background

Definition (NFI)
For N ⊴f .i. G the sets NFI(G) and NFIN(G) are defined as

NFI(G) := {H | H ⊴f .i. G}, NFIN(G) := {H | H ⊂ N,H ⊴f .i. G}.

Let us denote x12 := σ2
1, x23 := σ2

2, c := (σ1σ2)
3.

It can be shown that < x12, x23 >∼= F2, so we will identify F2 with
< x12, x23 >. It is known that PB3 ∼= F2 × ⟨c⟩.

Definition (Nord and NF2)
Let N ∈ NFIPB3(B3) and let

Nord := lcm(ord(x12N), ord(x23N), ord(cN)),

NF2 := N ∩ F2.

Ivan B. and Vadym P. Dihedral Poset and GT-Shadows 3 / 14



Background

Definition (NFI)
For N ⊴f .i. G the sets NFI(G) and NFIN(G) are defined as

NFI(G) := {H | H ⊴f .i. G}, NFIN(G) := {H | H ⊂ N,H ⊴f .i. G}.

Let us denote x12 := σ2
1, x23 := σ2

2, c := (σ1σ2)
3.

It can be shown that < x12, x23 >∼= F2, so we will identify F2 with
< x12, x23 >. It is known that PB3 ∼= F2 × ⟨c⟩.

Definition (Nord and NF2)
Let N ∈ NFIPB3(B3) and let

Nord := lcm(ord(x12N), ord(x23N), ord(cN)),

NF2 := N ∩ F2.

Ivan B. and Vadym P. Dihedral Poset and GT-Shadows 3 / 14



Background

Definition (NFI)
For N ⊴f .i. G the sets NFI(G) and NFIN(G) are defined as

NFI(G) := {H | H ⊴f .i. G}, NFIN(G) := {H | H ⊂ N,H ⊴f .i. G}.

Let us denote x12 := σ2
1, x23 := σ2

2, c := (σ1σ2)
3.

It can be shown that < x12, x23 >∼= F2, so we will identify F2 with
< x12, x23 >. It is known that PB3 ∼= F2 × ⟨c⟩.

Definition (Nord and NF2)
Let N ∈ NFIPB3(B3) and let

Nord := lcm(ord(x12N), ord(x23N), ord(cN)),

NF2 := N ∩ F2.

Ivan B. and Vadym P. Dihedral Poset and GT-Shadows 3 / 14



Background

Definition (GT-pair with the target N)
A GT-pair with the target N is a pair

(m + NordZ, fNF2) ∈ Z/NordZ × F2/NF2

satisfying hexagon relations:

σ2m+1
1 f−1σ2m+1

2 fN = f−1σ1σ2x−m
12 cmN

and

f−1σ2m+1
2 fσ2m+1

1 N = σ2σ1x−m
23 cmfN.

By writing [m, f ], we will mean the GT-pair represented by (m, f ).

We will motivate the hexagon relations by the fact that if they are satisfied for a GT-pair
[m, f ], then Tm,f , the map that is described on the next slide, is a homomorphism.
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Background

Proposition
For every GT-pair with the target N, [m, f ], the formulas

Tm,f (σ1) = σ2m+1
1 N, Tm,f (σ2) = f−1σ2m+1

2 fN

define a group homomorphism from B3 to B3/N.

Definition (GT-shadow with the target N)
A GT-pair [m, f ] is called a GT-shadow with the target N if it satisfies
two technical conditions and if the homomorphism Tm,f is surjective.
The set of GT-shadows with the target N is denoted by GT(N).
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Background

Proposition (Groupoid GTSh)
GT-shadows form a groupoid GTSh with Ob(GTSh) := NFIPB3(B3) and
GTSh(K,N) := {[m, f ] ∈ GT(N)| ker(Tm,f ) = K}.

Let Em,f : F2 → F2,

Em,f (x12) := x2m+1
12 , Em,f (x23) := f−1x2m+1

23 f .

Then composition of morphisms in GTSh is defined like this:

[m1, f1] ◦ [m2, f2] := [2m1m2 + m1 + m2, f1Em1,f1(f2)].
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Background

Let us denote Dn := ⟨r , s | rn, s2, srsr⟩,n ∈ Z≥3 the standard dihedral
group and ψn the homomorphism PB3 −→ D3

n , which is defined by
formulas:

ψn(x12) := (r , s, s), ψn(x23) := (rs, r , rs), ψn(c) := (1,1,1).

Also we define K(n) := ker(ψn) and K(n)
F2

= K(n) ∩ F2.

It can be shown that K(n) ⊴ B3, and thus Dih := {K(n) | n ∈ Z≥3} is a
subposet of NFIPB3(B3). We call Dih the dihedral poset.
Note that K (n)

ord = lcm(n,2).
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Results

We have explicitly described the set GT(K(n)) of GT-shadows with
the target K(n). If

Xn :=
{

m : m ∈ {0,1, . . . ,K (n)
ord − 1} | gcd(2m + 1,K (n)

ord ) = 1
}
;

κ(m) :=

{
m + 1, if 2 ∤ m,
−m, if 2 | m;

then

GT(K(n)) =
{
(m, (r2k , r−2k , rκ(m))) | m ∈ Xn, k ≡ κ(m)

2
mod 2

}
.

We have shown that K (n) is an isolated object of the groupoid
GTSh for every n ∈ Z≥3 (i.e., for H ̸= K (n), H ̸→ K (n)).
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Results

We have shown that

K (q) ⊂ K (n) ⇐⇒ n | lcm(q,2).

We have shown that if n,q ∈ Z≥3 and K(q) ⊂ K(n), then the natural
reduction map

RK(q),K(n) : GT(K(q)) → GT(K(n))

is surjective.
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Future Plans

Since K (n) is an isolated object of GTSh, GT(K (n)) is a group. We
would like to describe this group.

We would like to find the limit of the functor from Dih to the
category of the finite groups.
On the level of objects, the functor operates like this:

K (n) → GT(K (n)).

On the level of morphisms, the functor sends the natural
morphism K (q) → K (n) to the reduction homomorphism
RK(q),K(n) : GT(K(q)) → GT(K(n)).
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Motivation

Gal(Q/Q) ĜT ĜT × NFIPB3(B3)

Gal(E/Q) Mor(GTSh)

Dessins d’enfant (Child’s drawings)

Ihara embedding

g |E∈ Gal(E/Q) (surjective)

action

(possibly not surjective)

action

Gal(Q/Q) = Aut(Q), ĜT ⊂ Ẑ × F̂2,

Gal(E/Q) = Aut(E), E/Q.

Ivan B. and Vadym P. Dihedral Poset and GT-Shadows 11 / 14



Selected References

[1] V. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely
connected with Gal(Q/Q), Algebra i Analiz 2, 4 (1990) 149–181.

[2] V.A. Dolgushev and J.J. Guynee, GT-shadows for the gentle version ĜTgen of the
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THANK YOU!
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