Cayley's Formula

Primes-Switzerland Sebastian Brovelli

Mentor: Slavov Kaloyan

23.06.2018

n	$\mathbf{A_n}$
1	1
2	1
3	3
4	16

Cayley's Formula: $A_n = n^{n-2}$

$$A_n = n^{n-2}$$

A rooted forest, viewed as a directed graph

- For each component, one vertex is called a root.
- Every edge is directed away from the root.

F contains F'

If, in F', an edge starts at vertex x and ends at vertex y, there also is an edge from x to y in F.

N: #rooted trees on n vertices N*: #refinig sequences $(F_1,...,F_n)$

N*=N(n-1)!

N: #rooted trees on n vertices

N*: #refining sequences $(F_1, ..., F_n)$

$$N^* = n(n-1) * n(n-2) ... n * 1$$
 $N^* = n^{n-1}(n-1)!$
 $N^* = N(n-1)!$
 $N = n^{n-1}$
 $N = n^{n-1}$
 $N = A_n * n$
 $A_n = n^{n-2}$

$$A_5 = 5^3 = 125$$

