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What is a forest?

Like a tree, but it doesn't need to be connected.
= A graph without a cycle
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That is Kruskal's algorithm

Always add a edge with the lowest weight, which isn't already in the
forest and doesn't create a cycle.
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A graph is a tree on n vertices = it hasn — 1 edges \

Induction on the number of vertices.

Suppose it holds for n vertices. Let T be a graph on n + 1 vertices.
Find a longest path. Remove one of the vertices where it ends, you
get a new tree T"

T" is a tree on n vertices = (inductive hypothesis) it has n — 1
edges. = T has n edges.
U
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A graph is a forest on n vertices with k components = it hasn — k
edges.

Apply Lemma 1 on all components

O

by Lemma 1 : in every component # edges = # vertices - 1
= # all edges = # all vertices - k
O
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F, F' are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that F'U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € F’ connect two vertices in a component in F’

O

= |C(F)| < |C(F")|
|E(F)| < [E(F)|
= n— |C(F)| <n—|C(F)

contradiction! [J
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w(hk) < w(tk)

Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.
We know w(h;) < w(hy) because h is sorted.

= w(h;) <w(hy) < w(ty)

Kruskal's algorithm wouldn't chose ¢, at step k.

= contradiction = Kruskal's Algorithm finds a minimum weight
spanning-tree!
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