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Problem
You have a graph G and a function ω : E(G)→ R+.
Find a spanning-tree T such that the sum of the weight of all edges
in T is minimal.

What is a Graph?

What is a Tree?
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What is a graph?

A set of vertices connected by edges

The edges don’t have to be straight, and they’re allowed to intersect
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What is a tree?

A connected graph without any cycles
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What is a forest?

Like a tree, but it doesn’t need to be connected.
⇒ A graph without a cycle
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You have a graph G and a function ω : E(G)→ R+.
Find a tree T such that the sum of the weight of all edges in T is
minimal.
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That is Kruskal’s algorithm

Always add a edge with the lowest weight, which isn’t already in the
forest and doesn’t create a cycle.
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Lemma 1
A graph is a tree on n vertices ⇒ it has n− 1 edges

Induction on the number of vertices.
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Induction on the number of vertices.
Trivial case: 1 vertex
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Lemma 1
A graph is a tree on n vertices ⇒ it has n− 1 edges

Induction on the number of vertices.
Suppose it holds for n vertices. Let T be a graph on n+ 1 vertices.
Find a longest path. Remove one of the vertices where it ends, you
get a new tree T ′

T ′ is a tree on n vertices ⇒ (inductive hypothesis) it has n− 1
edges. ⇒ T has n edges.
�

8 / 12



Lemma 2
A graph is a forest on n vertices with k components ⇒ it has n− k
edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component # edges = # vertices - 1
⇒ # all edges = # all vertices - k
�

9 / 12



Lemma 2
A graph is a forest on n vertices with k components ⇒ it has n− k
edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component # edges = # vertices - 1

⇒ # all edges = # all vertices - k
�

9 / 12



Lemma 2
A graph is a forest on n vertices with k components ⇒ it has n− k
edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component # edges = # vertices - 1
⇒ # all edges = # all vertices - k
�

9 / 12



Lemma 3
F, F ′ are forests on the same n vertices, with |E(F )| < |E(F ′)|.
⇒ There exists e ∈ F ′ such that F ∪ e is still a forest.

If that wasn’t the case, adding any e ∈ F ′ to F would create a cycle.
⇒ All e ∈ F ′ connect two vertices in a component in F
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⇒ # components in F ≤ #components in F ′.
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Lemma 3
F, F ′ are forests on the same n vertices, with |E(F )| < |E(F ′)|.
⇒ There exists e ∈ F ′ such that F ∪ e is still a forest.

If that wasn’t the case, adding any e ∈ F ′ to F would create a cycle.
⇒ All e ∈ F ′ connect two vertices in a component in F

⇒ |C(F )| ≤ |C(F ′)|
|E(F )| < |E(F ′)|

⇒ n− |C(F )| < n− |C(F ′)|
contradiction! �
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Graph G, trees T and H, with ω(T ) > ω(H)
Sort the edges in H and T by weight. ⇒ h1, ..., hn and t1, ..., tn
Hi and Ti are the forests made by the first i edges of H and T

t1t2

t3

t4

Let k be the first step ω(Hk) is smaller than ω(Tk)
i.e ω(Hk) < ω(Tk) but ω(Hk−1) ≥ ω(Tk−1) ⇒ ω(hk) < ω(tk)
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ω(hk) < ω(tk)

Lemma 3 ⇒ there is a hj ∈ Hk such that Tk−1 ∪ hj is a forest.
We know ω(hj) ≤ ω(hk) because h is sorted.
⇒ ω(hj) ≤ ω(hk) < ω(tk)
Kruskal’s algorithm wouldn’t chose tk at step k.
⇒ contradiction ⇒ Kruskal’s Algorithm finds a minimum weight
spanning-tree!
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