Kruskal's Greedy Algorithm

Jonas Hofmann
Kantonsschule Uster 5th year

Mentor: Kaloyan Slavov
Primes-Switzerland

23.Juni 2018

Mentor: Kaloyan Slavov

You have a graph G and a function w : E(G) — R™.
Find a spanning-tree T" such that the sum of the weight of all edges
in 7" is minimal.

You have a graph G and a function w : E(G) — R™.
Find a spanning-tree T" such that the sum of the weight of all edges
in 7" is minimal.

e What is a Graph?

You have a graph G and a function w : E(G) — R™.
Find a spanning-tree T" such that the sum of the weight of all edges
in 7" is minimal.

e What is a Graph?
@ What is a Tree?

What is a graph?

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

What is a tree?

What is a tree?

A connected graph without any cycles

What is a tree?

A connected graph without any cycles

What is a tree?

A connected graph without any cycles

What is a forest?

What is a forest?

Like a tree, but it doesn't need to be connected.
= A graph without a cycle

You have a graph G and a function w : E(G) — R™.
Find a tree T such that the sum of the weight of all edges in T is

minimal.

AN 3
{17,
N

You have a graph G and a function w : E(G) — R™.
Find a tree T such that the sum of the weight of all edges in T is

minimal.

@<3§>{3
NS

You have a graph G and a function w : E(G) — R™.
Find a tree T such that the sum of the weight of all edges in T is

minimal.

<3/?j>{3
NS

You have a graph G and a function w : E(G) — R™.
Find a tree T such that the sum of the weight of all edges in T is

minimal.

I 3
v

N4

That is Kruskal's algorithm

Always add a edge with the lowest weight, which isn't already in the
forest and doesn't create a cycle.

A graph is a tree on n vertices = it hasn — 1 edges l

Induction on the number of vertices.

A graph is a tree on n vertices = it hasn — 1 edges l

Induction on the number of vertices.
Trivial case: 1 vertex

A graph is a tree on n vertices = it hasn — 1 edges \

Induction on the number of vertices.

Suppose it holds for n vertices. Let T" be a tree on n + 1 vertices.
Find a longest path.

A graph is a tree on n vertices = it hasn — 1 edges \

Induction on the number of vertices.

Suppose it holds for n vertices. Let T be a graph on n + 1 vertices.
Find a longest path. Remove one of the vertices where it ends, you
get a new tree T"

T" is a tree on n vertices = (inductive hypothesis) it has n — 1
edges. = T has n edges.
U

A graph is a forest on n vertices with k components = it hasn — k
edges.

Apply Lemma 1 on all components

A graph is a forest on n vertices with k components = it hasn — k
edges.

Apply Lemma 1 on all components

O

by Lemma 1 : in every component # edges = # vertices - 1

A graph is a forest on n vertices with k components = it hasn — k
edges.

Apply Lemma 1 on all components

O

by Lemma 1 : in every component # edges = # vertices - 1
= # all edges = # all vertices - k
O

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € I’ connect two vertices in a component in F'

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € I’ connect two vertices in a component in F'

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € I’ connect two vertices in a component in F'

O

F, F'" are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that ' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € I’ connect two vertices in a component in F'

O

= # components in ' < #components in F’.

F, F' are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € I’ such that F' U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All ¢ € I’ connect two vertices in a component in F'

= [C(F)] < |C(F)]

F, F' are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € I’ such that F' U e is still a forest.

If that wasn't the case, adding any e € F’ to F would create a cycle.
= All e € F’ connect two vertices in a component in F’

O

= [C(F)] < |C(F)]
[E(F)| < [E(F)]

F, F' are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that F'U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € I’ connect two vertices in a component in F'

O

= |C(F)| < |C(F")|
|E(F)| < [E(F)|
= n— |C(F)| <n—|C(F)

F, F' are forests on the same n vertices, with |E(F)| < |E(F")|.
= There exists e € F' such that F'U e is still a forest.

If that wasn't the case, adding any e € F’ to I would create a cycle.
= All e € F’ connect two vertices in a component in F’

O

= |C(F)| < |C(F")|
|E(F)| < [E(F)|
= n— |C(F)| <n—|C(F)

contradiction! [J

Graph G, trees T and H, with w(T') > w(H)
Sort the edges in H and T by weight. = hq, ..., h, and tq, ..., 1,
H; and T; are the forests made by the first i edges of H and T

t3

<

t4 t2 tl

peaig

Graph G, trees T and H, with w(T') > w(H)
Sort the edges in H and T by weight. = hq, ..., h, and tq, ..., 1,
H; and T; are the forests made by the first i edges of H and T

t3

<

t4 t2 tl

peasd

Let k& be the first step w(Hy,) is smaller than w(T})
ie w(Hy) < w(Ty) but w(Hi—1) > w(Tk_1)

Graph G, trees T and H, with w(T') > w(H)
Sort the edges in H and T by weight. = hq, ..., h, and tq, ..., 1,
H; and T; are the forests made by the first i edges of H and T

t3

<

t4 t2 tl

pead

Let k& be the first step w(Hy,) is smaller than w(T})
ie w(Hy) < w(Ty) but w(Hi—1) > w(Tk—1) = w(hi) < w(ty)

Graph G, trees T and H, with w(T') > w(H)
Sort the edges in H and T by weight. = hq, ..., h, and tq, ..., 1,
H; and T; are the forests made by the first i edges of H and T

t3

<

t4 t2 tl

pead

Let k& be the first step w(Hy,) is smaller than w(T})
ie w(Hy) < w(Ty) but w(Hi—1) > w(Tk—1) = w(hi) < w(ty)

Graph G, trees T and H, with w(T') > w(H)
Sort the edges in H and T by weight. = hq, ..., h, and tq, ..., 1,
H; and T; are the forests made by the first i edges of H and T

t3

<

t4 t2 tl

NS

Let k& be the first step w(Hy,) is smaller than w(T})
ie w(Hy) < w(Ty) but w(Hi—1) > w(Tk—1) = w(hi) < w(ty)

w(hk) < w(tk)

w(hk) < w(tk)
Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.

w(hk) < w(tk)
Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.
We know w(h;) < w(hy) because h is sorted.

w(hk) < w(tk)

Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.
We know w(h;) < w(hy) because h is sorted.

= w(h;) <w(hy) < w(ty)

w(hk) < w(tk)

Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.
We know w(h;) < w(hy) because h is sorted.

= w(h;) <w(hy) < w(ty)

Kruskal's algorithm wouldn't chose ¢, at step k.

w(hk) < w(tk)

Lemma 3 = there is a h; € Hy, such that T;,_; U h; is a forest.
We know w(h;) < w(hy) because h is sorted.

= w(h;) <w(hy) < w(ty)

Kruskal's algorithm wouldn't chose ¢, at step k.

= contradiction = Kruskal's Algorithm finds a minimum weight
spanning-tree!

	Introduction
	Graph
	Tree
	Forest
	Kruskal
	Lemma 1
	Lemma 2
	Lemma 3
	proof

