Ramification of weak Arthur packets for *p*-adic groups (joint work w. Emile Okada)

Maxim Gurevich

Technion - IIT

Lie Groups Seminar (remote talk) MIT, Oct 2024

- Quick and biased review of local Arthur packets (can skip)
- 2 Second introduction: A cheap ideology
- Weak Arthur packets
- Weak sphericity (main theorem)
- Silpotent cone geometry
 - Relative special pieces
 - Lusztig's canonical quotients

Quick and biased review of local Arthur packets (can skip)

- 2) Second introduction: A cheap ideology
- 3 Weak Arthur packets
- Weak sphericity (main theorem)
- 5 Nilpotent cone geometry
 - Relative special pieces
 - Lusztig's canonical quotients

Some global matters

- For exposition, G is a semisimple group defined over a number field k. For all but finitely many (p-adic) completions $k < k_v$, the locally compact group $G(k_v)$ has a well-defined (hyperspecial) maximal compact subgroup $K_v = G(\mathfrak{O}_v)$, where $\mathfrak{O}_v < k_v$ is the p-adic ring of integers.
- An irreducible representation smooth representation of the adélic group $\mathbf{G}(\mathbb{A}_k) = \prod_v' \mathbf{G}(k_v)$ is an infinite tensor products of the form

 $\pi = \otimes_v \pi_v$,

where each π_v is a smooth irreducible $\mathbf{G}(k_v)$ -representation, so that all but finitely many of them are *spherical*.

• A spherical (or, unramified) π_v is one that has a non-zero $K_v\text{-invariant}$ vector.

Some global matters

- Two such representations $\pi = \bigotimes_v \pi_v, \pi' = \bigotimes_v \pi'_v$ of are said to be *near-equivalent*, when for all but finitely many v, the (spherical) representations $\pi_v \cong \pi'_v$ are isomorphic.
- When classifying *automorphic* representations of $G(\mathbb{A}_k)$, the near-equivalence relation seems to be natural.
- Indeed, (at least) for $\mathbf{G} = \mathrm{Sp}_{2n}, \mathrm{SO}_{2n+1}$, the celebrated endoscopic project of Arthur and others gave a description of all near-equivalence classes in a suitable automorphic space. (sorry for lack of details...)
- Essentially, these are the (global) Arthur packets $\{\Pi_{\Psi}\}_{\Psi}$.

Arthur packets for classical groups

- Still for $\mathbf{G} = \mathrm{Sp}_{2n}, \mathrm{SO}_{2n+1}$, an Arthur packet Π_{Ψ} defines a *local Arthur* packet for each completion $k < k_v$: A finite set $\Pi_{\Psi,v}$ of isomorphism classes of irreducible unitarizable smooth $\mathbf{G}(k_v)$ -representations.
- The set of automorphic representations Π_{Ψ} is then described as a certain subset (with multiplicites) of the set

$$\{\otimes_v \pi_v : \pi_v \in \Pi_{\Psi,v}\}$$

of $\mathbf{G}(\mathbb{A}_k)$ -representations.

"
$$\Pi_{\Psi} = \otimes'_{v} \Pi_{\Psi,v}$$
 "

Local Arthur packets: What is it about?

- One can wonder: Does the representation theory of *p*-adic groups have a right to exist without relying on number theory?
- If your answer is positive, what is the 'true' meaning of local Arthur packets?

Local Arthur packets: Things to notice

- Local Arthur packets may intersect, that is, an irreducible $\mathbf{G}(k_v)$ -representation π_v can belong to $\Pi_{\Psi,v} \cap \Pi_{\Psi',v}$, even when $\Pi_{\Psi,v} \neq \Pi_{\Psi',v}$.
- Yet, when π_v is spherical, there is at most a unique local Arthur packet Π containing it (Moeglin).
- These local packets Π are the anti-tempered packets, that is, Aubert-dual to the tempered local Arthur packets.
- Thus, in a global Arthur packet $\Pi_{\Psi} = \otimes'_{v} \Pi_{\Psi,v}$, for all but finitely many v, $\Pi_{\Psi,v}$ is an anti-tempered packet.

2 Second introduction: A cheap ideology

- 3) Weak Arthur packets
- Weak sphericity (main theorem)
- 5 Nilpotent cone geometry
 - Relative special pieces
 - Lusztig's canonical quotients

Size of representations of *p*-adic groups

- Now, G is a reductive p-adic group. i.e. $G = \operatorname{Sp}_{2n}(\mathbb{Q}_p)$.
- $V_{/\mathbb{C}}$ an irreducible smooth representation $G \curvearrowright V$.
- Usually V is infinite-dimensional. Still, how to quantify its 'size'?
- Maybe use compact subgroups K < G, because, by admissibility $\dim(V^K) < \infty.$
- Fix a basis of open compact subgroups

 $\dots < K_{i+1} < K_i < \dots < K_0 < G , \quad \cap_i K_i = \{e\}$

• Since
$$V = \cup_i V^{K_i}$$
, $\lim_{i \to \infty} \dim(V^{K_i}) = \infty$.

(Vague) invariants

- The Gelfand-Kirillov dimension $\operatorname{GKdim}(V)$ measures the rate by which $\dim(V^{K_i})$ grows. (It can be determined by the algebraic wavefront set.)
- The 'depth' of V looks at the minimal i, for which $\dim(V^{K_i}) > 0$.
- What is the relation between them?
- Specifically, what are the smallest representations with respect to the two invariants?

Minimizers

- Irreducible representations with minimal GKdim are a known source of interest.
- When G is split, minimal 'depth' can be taken as the class of spherical representations. i.e. taking K_0 to be the hyperspecial maximal compact subgroup.
- Meta-claim: The two notions of small size are related.

Example and speculations

• Each irreducible spherical representation of $GL_n(F)$ (F a p-adic field) is the unique representation with minimal GKdim among irreducible representations on same supercuspidal support.

(Follows from classical results of Moeglin–Waldspurger and Zelevinsky.)

- Speculations Same may/should remain true for other reductive groups, with the following adjustments:
 - supercuspidal support \rightsquigarrow infinitesimal character.
 - spherical \rightsquigarrow weakly spherical (drop hyperspecial restriction!).
 - unique → share a local Arthur packet.

2) Second introduction: A cheap ideology

Weak Arthur packets

Weak sphericity (main theorem)

5 Nilpotent cone geometry

- Relative special pieces
- Lusztig's canonical quotients

Classical groups and their Langlands reciprocity

- From now, G is either $Sp_{2n}(F)$ or $SO_{2n+1}(F)$, for a p-adic field F.
- Langlands dual group G^{\vee} is then either $SO_{2n+1}(\mathbb{C})$ or $Sp_{2n}(\mathbb{C})$.
- \bullet Local Langlands Reciprocity: Each irreducible representation $\pi \in {\rm Irr}(G)$ has an $L\mbox{-}parameter$

$$\phi_{\pi}: W_F \times \mathrm{SL}_2(\mathbb{C}) \to G^{\vee}$$

attached to it (up to conjugation). W_F is the Weil group of the field.

Infinitesimal characters

• The *infinitesimal character* of $\pi \in Irr(G)$ is the composed homomorphism

$$\chi_{\pi}: W_F \xrightarrow{w \mapsto \left(w, \begin{pmatrix} |w|^{1/2} & 0 \\ 0 & |w|^{-1/2} \end{pmatrix} \right)} W_F \times \operatorname{SL}_2(\mathbb{C}) \xrightarrow{\phi_{\pi}} G^{\vee} ,$$

up to conjugation.

- Terminology is motivated by an analogy to the natural notion for representations of real groups.
- For a spherical π , $\chi_{\pi}(Fr)$ is the Satake parameter classifying π .

Basic infinitesimal characters

- Let \mathcal{U}^{\vee} be the set of unipotent conjugacy classes in $G^{\vee}.$
- A class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$ gives by Jacobson-Morozov a homormorphism $\phi_{\mathcal{O}^{\vee}} : \operatorname{SL}_2(\mathbb{C}) \to G^{\vee}$. i.e. $\phi_{\mathcal{O}^{\vee}}\left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right) \in \mathcal{O}^{\vee}$
- We inflate $\phi_{\mathcal{O}^{\vee}}$ into a *basic L*-parameter

$$\phi_{\mathcal{O}^{\vee}}: W_F \times \mathrm{SL}_2(\mathbb{C}) \to G^{\vee}$$

by making it trivial on W_F .

• Representations $\pi \in Irr(G)$ with $\phi_{\pi} = \phi_{\mathcal{O}^{\vee}}$ are tempered, and their infinitesimal character we denote as $\chi_{\mathcal{O}^{\vee}}$.

$$\mathcal{O}^{\vee} \mapsto \chi_{\mathcal{O}^{\vee}}$$

Weak Arthur packets

- Barbasch–Vogan have given a local meaning to the notion of an Arthur packet for real groups. The following definition emulates their approach.
- \bullet For a unipotent conjugacy class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee},$ the set

$$\Pi^{w}_{\mathcal{O}^{\vee}} = \left\{ \pi \in \operatorname{Irr}(G) : \chi_{\pi} = \chi_{\mathcal{O}^{\vee}} , \quad \begin{array}{c} \operatorname{GKdim}(\pi) \leq \operatorname{GKdim}(\pi'), \\ \forall \pi' \in \operatorname{Irr}(G), \ \mathsf{s.t.}\chi_{\pi'} = \chi_{\mathcal{O}^{\vee}} \end{array} \right\}$$

is called a weak Arthur packet.

Spherical Arthur packets revisited

- For a conjugacy class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$, there is a unique spherical representation $\pi \in \operatorname{Irr}(G)$ with infinitesimal character (Satake parameter) $\chi_{\pi} = \chi_{\mathcal{O}^{\vee}}$.
- Recall that a unique ('strong') local Arthur packet $\pi \in \Pi_{\mathcal{O}^{\vee}}$ is known to contain it.
- The packet consists of all *anti-tempered* representations that admit $\chi_{\mathcal{O}^{\vee}}$ as their infinitesimal character. Namely, the representations in $\Pi_{\mathcal{O}^{\vee}}$ are those Aubert-dual to those admitting the tempered *L*-parameter $\phi_{\mathcal{O}^{\vee}}$.

Ciubotaru – Mason-Brown – Okada, 23' $\Pi_{\mathcal{O}^{\vee}} \subset \Pi_{\mathcal{O}^{\vee}}^{w}$

- Quick and biased review of local Arthur packets (can skip)
- 2) Second introduction: A cheap ideology
- 3 Weak Arthur packets

- 5 Nilpotent cone geometry
 - Relative special pieces
 - Lusztig's canonical quotients

Weak sphericity

- We say that a representation $(\pi, V) \in Irr(G)$ is weakly spherical, when a maximal compact subgroup K < G exists, so that $V^K \neq \{0\}$.
- Our groups G have maximal compact subgroups that are not (conjugate to) hyperspecial:

$$K_{i} = G \cap \begin{pmatrix} \operatorname{GL}_{i}(\mathfrak{O}_{F}) & M_{i,N-2i}(\mathfrak{O}_{F}) & M_{i,i}(\mathfrak{p}_{F}^{-1}) \\ M_{N-2i,i}(\mathfrak{p}_{F}) & \operatorname{GL}_{N-2i}(\mathfrak{O}_{F}) & M_{N-2i,i}(\mathfrak{O}_{F}) \\ M_{i,i}(\mathfrak{p}_{F}) & M_{i,N-2i}(\mathfrak{p}_{F}) & \operatorname{GL}_{i}(\mathfrak{O}_{F}) \end{pmatrix} < G .$$

Here, $\mathfrak{p}_F < \mathfrak{O}_F < F$ is the ring of integers and its maximal ideal.

Weakly spherical Arthur packets

- We say that a local Arthur packet $\Pi_{\psi} \subset Irr(G)$ is weakly spherical, if it contains an anti-tempered weakly spherical representation $\pi \in \Pi_{\psi}$.
- Suspecture: Removing "anti-tempered" from the definition is harmless. (i.e when an Arthur packet contains a weakly spherical representation, it must also contain an anti-tempered weakly spherical one.)

Main result: Symplectic case

G. – Okada (arXiv:2404.03485)

Let $\Pi \subset \operatorname{Irr}(\operatorname{Sp}_{2n}(F))$ be a local Arthur packet, whose constituents admit the infinitesimal character $\chi_{\mathcal{O}^{\vee}}$, for a unipotent conjugacy class \mathcal{O}^{\vee} of G^{\vee} .

Then, Π is weakly spherical, if and only if, $\Pi \subset \Pi_{\mathcal{O}^{\vee}}^{w}$.

Moreover, each weak Arthur packet $\Pi^w_{\mathcal{O}^{\vee}}$ is precisely the union of all weakly spherical Arthur packets whose constituents admit the infinitesimal character $\chi_{\mathcal{O}^{\vee}}$.

Thought process guide: One member of an Arthur packet minimizes 'depth', if and only if, all members of the packet minimize Gelfand-Kirillov dimension.

Example

- $G = \mathrm{Sp}_8(F)$ and \mathcal{O}^{\vee} the unipotent orbit in $\mathrm{SO}_9(\mathbb{C})$ corresponding to the partition 135.
- Tempered *L*-parameter is

$$\phi_{\mathcal{O}^{\vee}} = 1 \otimes \nu_1 + 1 \otimes \nu_3 + 1 \otimes \nu_5 ,$$

where ν_k is the k-dimensional irreducible $SL_2(\mathbb{C})$ -representation.

- The anti-tempered Arthur packet has 4 representations $\Pi_{\mathcal{O}^{\vee}} = \{\delta, \delta', \pi, \sigma\}.$
- δ is spherical, δ' is weakly-spherical (π is lwahori-invariant, σ is supercuspidal).
- While $\Pi_{\mathcal{O}^{\vee}}$ is the only Arthur packet containing δ , there is another Arthur packet $\Pi_{\psi} = \{\delta', \sigma, \tau\}$ that contains δ' .
- Indeed,

$$\Pi^w_{\mathcal{O}^{\vee}} = \Pi_{\mathcal{O}^{\vee}} \cup \Pi_{\psi} = \{\delta, \delta', \pi, \sigma, \tau\} .$$

Consequences/Observations

- Weak Arthur packets are unions of Arthur packets. That was proved in parallel by Liu–Lo.
- In particular, all constituents of weak Arthur packets are unitarizable, a conjecture of Ciubotaru–Mason-Brown–Okada is settled, and a nice analogy with the real groups case is seen.
- We see a 'weak' analogue to the stated Moeglin result about uniqueness of an Arthur packet that contains a given spherical representation: A weak Arthur packet is the unique 'packet' with infinitesimal character χ_{O[∨]} containing (anti-tempered) weakly spherical representations.

'Awkwardness' in the orthogonal case

- $G = SO_{2n+1}(F)$ is not simply-connected, giving a central element $-I \in G^{\vee}$.
- Hence, *L*-parameters and their infinitesimal characters can all be tensored with the unramified quadratic character κ of W_F : $\chi_{-1,\mathcal{O}^{\vee}}$.
- Resulting operation on Irr(G) is tensoring with a quadratic character κ of G (abusing notation). Has to do with the spinor norm.
- Since κ may not be trivial on maximal compact groups (!) We say that a representation is -1-weakly spherical when it has non-zero κ-equivariant vectors under a maximal compact subgroup.
- More Arthur packets and weak Arthur packets need to be naturally introduced: $\Pi_{-1,\mathcal{O}^\vee},\Pi_{-1,\mathcal{O}^\vee}^w.$

Main theorem: Orthogonal case

G. – Okada

Let $\Pi \subset \operatorname{Irr}(\mathrm{SO}_{2n+1}(F))$ be a local Arthur packet, whose constituents admit the infinitesimal character $\chi_{s,\mathcal{O}^{\vee}}$, for a unipotent conjugacy class \mathcal{O}^{\vee} of G^{\vee} and $s \in \{\pm 1\}$.

Then, Π is (-s)-weakly spherical, if and only if, $\Pi \subset \Pi^w_{s,\mathcal{O}^{\vee}}$.

Moreover, each weak Arthur packet $\Pi^w_{s,\mathcal{O}^\vee}$ is precisely the union of all (-s)-weakly spherical Arthur packets whose constituents admit the infinitesimal character $\chi_{s,\mathcal{O}^\vee}$.

Three theorems

Proof of our main theorem follows from three separate results.(Though could be nice to find a direct proof!)

- Explicit description of the Arthur packets that compose a weak Arthur packet. (extending Liu-Lo)
 - Main tool: Explicit knowledge of algebraic wavefront sets for unipotent representations (CMBO).

 Identification of the weakly spherical spectrum in terms of the enhanced Langlands reciprocity.

• Main tool: Kazhdan-Lusztig geometric constructions for affine Hecke algebras, and recent advances in Springer theory by Waldspurger and La.

Identification of Arthur packets that contain the weakly spherical spectrum.

• Main tool: The theory of intersections of Arthur packets, as developed by Moeglin, Xu, Atobe.

Standalone interest

Question 1:

Which local Arthur packets (beyond the anti-tempered packet) are included in the weak Arthur packet $\Pi^w_{\mathcal{O}^\vee}$?

Question 2:

Which anti-tempered representations (in $\Pi_{\mathcal{O}^{\vee}}$) are weakly spherical?

The answers to both questions are given in terms of the structure of the nilpotent/unipotent cone of the dual group G^{\vee} .

- Quick and biased review of local Arthur packets (can skip)
- 2 Second introduction: A cheap ideology
- 3 Weak Arthur packets
- Weak sphericity (main theorem)
- 5 Nilpotent cone geometry
 - Relative special pieces
 - Lusztig's canonical quotients

Special pieces

- The conjugacy classes (or, orbits) in U[∨] are divided into equivalence classes known as *special pieces*.
- Each special piece consists of power-of-2 orbits. Toplogical order between them is the hypercube lattice.
- There is a (Barbasch–Vogan–Lusztig–Spaltenstein) duality map d from \mathcal{U}^{\vee} to the nilpotent orbits of $\operatorname{Lie}(G_{\overline{F}})$. Special pieces may be defined as the fibers of that map.
- For an orbit $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$, we set the *relative special piece* $\operatorname{Spc}(\mathcal{O}^{\vee})$ of it, to be the set of orbits in \mathcal{U}^{\vee} that share a special piece with \mathcal{O}^{\vee} and are contained in its closure.
- Still $|\operatorname{Spc}(\mathcal{O}^{\vee})| = 2^k$.

Weakly spherical Arthur parameters

- One meaningful invariant of Arthur parameters $\psi \in \Psi(G)$ is their SL_2 -type:
- Namely, when viewed as a homomorphism

$$\psi: W_F \times \mathrm{SL}_2^L(\mathbb{C}) \times \mathrm{SL}_2^A(\mathbb{C}) \to G^{\vee}$$
,

this is the restriction $\psi|_{\mathrm{SL}_2^A(\mathbb{C})}$, whose isomorphism class is again parameterized by an orbit $\mathcal{O}_\psi^\vee \in \mathcal{U}^\vee$.

Proposition

For any $\mathcal{O}_1^{\vee} \in \mathcal{U}^{\vee}$ and any $\mathcal{O}_2^{\vee} \in \operatorname{Spc}(\mathcal{O}_1^{\vee})$, there is a unique Arthur parameter $\psi = \psi_{\mathcal{O}_1^{\vee}, \mathcal{O}_2^{\vee}} \in \Psi(G)$ with infinitesimal character coming from \mathcal{O}_1^{\vee} and SL_2 -type \mathcal{O}_2^{\vee} .

$$\chi_{\psi} = \chi_{\mathcal{O}_1^{\vee}}, \quad \mathcal{O}_{\psi}^{\vee} = \mathcal{O}_2^{\vee}.$$

For example, $\Pi_{\psi_{\mathcal{O}^{\vee},\mathcal{O}^{\vee}}} = \Pi_{\mathcal{O}^{\vee}}$ is the anti-tempered Arthur packet.

Weakly spherical Arthur packets

Theorem (G.-Okada)

For any unipotent orbit $\mathcal{O}_1^{\vee} \in \mathcal{U}^{\vee}$, the weak Arthur packet attached to it is decomposed as a (non-disjoint) union of $|\operatorname{Spc}(\mathcal{O}_1^{\vee})|$ Arthur packets

$$\Pi^w_{\mathcal{O}_1^\vee} = \bigcup_{\mathcal{O}_2^\vee \in \operatorname{Spc}(\mathcal{O}_1^\vee)} \Pi_{\psi_{\mathcal{O}_1^\vee, \mathcal{O}_2^\vee}}$$

Question 2:

Which anti-tempered representations (in $\Pi_{\mathcal{O}^{\vee}}$) are weakly spherical?

A side plot: Representation theory of Weyl groups

- Our groups G^{\vee} (and G...) have the finite group W_n of signed permutations as their Weyl group.
- For each unipotent conjugacy class O[∨] in G[∨], Springer theory constructs an action of W_n on the cohomology space H^{*}(B_{O[∨]}) of the variety of Borel subgroups of G[∨] containing a fixed representative of u ∈ O[∨].
- The component (2-)group $A(\mathcal{O}^{\vee}) := Z_{G^{\vee}}(u)/Z_{G^{\vee}}(u)^{\circ}$ acts on $H^*(\mathcal{B}_{\mathcal{O}^{\vee}})$ as well, commuting with the W_n -action.

• Each irreducible local system $\rho \in \widehat{A(\mathcal{O}^{\vee})}$ gives a W_n -representation

$$\Sigma(\mathcal{O}^{\vee},\rho) = \operatorname{Hom}_{A(\mathcal{O}^{\vee})}(\rho, H^*(\mathcal{B}_{\mathcal{O}^{\vee}})) .$$

Kazhdan–Lusztig *K*-theory construction

- For the principal block of representations of split *p*-adic groups, Kazhdan-Lusztig have adopted a Springer-like approach to construct Langlands reciprocity.
- Idea is that these cases are equivalent to representation of an *affine Hecke algebra*, which is viewed as a *quantized* version of the *affine* Weyl group (of the *p*-adic group in question).
- Lusztig later extended this approach to treat all *unipotent* representations.
- Bottom line for our needs: A geometric construction and parameterization

$$\Pi_{\mathcal{O}^{\vee}} = \left\{ \delta(\mathcal{O}^{\vee}, \rho) \ : \ \rho \in \widehat{A(\mathcal{O}^{\vee})}_0 \right\}$$

of anti-tempered representations is in place.

Weak sphericity translated to Springer theory

- Lusztig and Reeder showed that when " $q \to 1$ " (q = residue characteristic of F) is suitably performed, one obtains the W_n -representation $\Sigma(\mathcal{O}^{\vee}, \rho)$ out of the G-representation $\delta = \delta(\mathcal{O}^{\vee}, \rho)$, whenever δ is Iwahori-invariant.
- $\bullet\,$ Turns out weak-sphericity can be detected on the " $q \to 1$ " level!

Proposition

$$\dim \left(\Sigma(\mathcal{O}^{\vee}, \rho)^{W_i \times W_{n-i}} \right) = \dim \left(\delta(\mathcal{O}^{\vee}, \rho)^{K_i} \right)$$

Here, $W_i \times W_{n-i} < W_n$ is the (non-parabolic, in Coxeter formalism) subgroup of signed permutations perserving $\{1, \ldots, i\}$.

Green theory

- Want to know when is $\Sigma(\mathcal{O}^{\vee}, \rho)^{W_i \times W_{n-i}} \neq \{0\}.$
- Recall, $\Sigma(\mathcal{O}^{\vee}, \rho)$ is not irreducible. Determining its decomposition to irreducible representations has to do with the theme of *Green functions*.
- Recently, Waldspurger devised closed formulas for such a decomposition for the G[∨] = Sp_{2n}(ℂ) case. Methods were extended to G[∨] = SO_{2n+1}(ℂ) by La.

Lusztig's canonical quotient

Theorem: Symplectic case (G.–Okada)

The representation $\delta(\mathcal{O}^{\vee}, \rho)$ is weakly spherical, if and only if, the character ρ of the component group $A(\mathcal{O}^{\vee})$ factor through Lusztig's canonical quotient.

- The subgroup $A^{\dagger}(\mathcal{O}^{\vee}) < \widehat{A(\mathcal{O}^{\vee})}$ of characters factoring through that quotient has its own history.
- Recall that each non-zero $\Sigma(\mathcal{O}^{\vee}, \rho)$ has an *irreducible* summand $L(\mathcal{O}^{\vee}, \rho) = \operatorname{Hom}_{A(\mathcal{O}^{\vee})}(\rho, H^{top}(\mathcal{B}_{\mathcal{O}^{\vee}})) \in \operatorname{Irr}(W_n).$
- Irr(W_n) is divided into Kazhdan-Lusztig (two-sided) cells. Those are conveniently in bijection with the set of special pieces in U[∨].
- Achar–Sage: $A^{\dagger}(\mathcal{O}^{\vee})$ consists of those characters ρ , for which the KL cell of $L(\mathcal{O}^{\vee}, \rho)$ matches the special piece of \mathcal{O}^{\vee} .

Thank you for listening!