Ramification of weak Arthur packets for p -adic groups (joint work w. Emile Okada)

Maxim Gurevich

Technion - IIT

Lie Groups Seminar (remote talk) MIT, Oct 2024

- [Second introduction: A cheap ideology](#page-8-0)
- [Weak Arthur packets](#page-13-0)
- [Weak sphericity \(main theorem\)](#page-19-0)
- [Nilpotent cone geometry](#page-29-0)
	- [Relative special pieces](#page-30-0)
	- [Lusztig's canonical quotients](#page-33-0)

1 [Quick and biased review of local Arthur packets \(can skip\)](#page-2-0)

- [Second introduction: A cheap ideology](#page-8-0)
- [Weak Arthur packets](#page-13-0)
- [Weak sphericity \(main theorem\)](#page-19-0)
- [Nilpotent cone geometry](#page-29-0) • [Relative special pieces](#page-30-0)
	- [Lusztig's canonical quotients](#page-33-0)

Some global matters

- \bullet For exposition, G is a semisimple group defined over a number field k. For all but finitely many (p-adic) completions $k < k_v$, the locally compact group $\mathbf{G}(k_{v})$ has a well-defined (hyperspecial) maximal compact subgroup $K_v = \mathbf{G}(\mathfrak{O}_v)$, where $\mathfrak{O}_v < k_v$ is the *p*-adic ring of integers.
- \bullet An irreducible representation smooth representation of the adélic group $\mathbf{G}(\mathbb{A}_k)=\prod_v'\mathbf{G}(k_v)$ is an infinite tensor products of the form

 $\pi = \otimes_{\alpha} \pi_{\alpha}$.

where each π_v is a smooth irreducible $\mathbf{G}(k_v)$ -representation, so that all but finitely many of them are spherical.

A spherical (or, unramified) π_{v} is one that has a non-zero K_{v} -invariant vector.

Some global matters

- Two such representations $\pi=\otimes_v\pi_v, \pi'=\otimes_v\pi'_v$ of are said to be near-equivalent, when for all but finitely many v , the (spherical) representations $\pi_v \cong \pi'_v$ are isomorphic.
- When classifying *automorphic* representations of $\mathbf{G}(\mathbb{A}_k)$, the near-equivalence relation seems to be natural.
- Indeed, (at least) for $\mathbf{G} = \text{Sp}_{2n}$, SO_{2n+1} , the celebrated endoscopic project of Arthur and others gave a description of all near-equivalence classes in a suitable automorphic space. (sorry for lack of details...)
- **•** Essentially, these are the (global) Arthur packets $\{\Pi_{\Psi}\}_{\Psi}$.

Arthur packets for classical groups

- Still for $\mathbf{G} = \text{Sp}_{2n}, \text{SO}_{2n+1}$, an Arthur packet Π_{Ψ} defines a local Arthur packet for each completion $k < k_v$: A finite set $\Pi_{\Psi,v}$ of isomorphism classes of irreducible unitarizable smooth $\mathbf{G}(k_{v})$ -representations.
- The set of automorphic representations Π_{Ψ} is then described as a certain subset (with multiplicites) of the set

$$
\{\otimes_v \pi_v \; : \; \pi_v \in \Pi_{\Psi,v}\}
$$

of $\mathbf{G}(\mathbb{A}_k)$ -representations.

$$
" \quad \Pi_{\Psi} = \otimes'_v \Pi_{\Psi,v} \quad " \quad
$$

Local Arthur packets: What is it about?

- \bullet One can wonder: Does the representation theory of p-adic groups have a right to exist without relying on number theory?
- If your answer is positive, what is the 'true' meaning of local Arthur packets?

Local Arthur packets: Things to notice

- Local Arthur packets may intersect, that is, an irreducible $\mathbf{G}(k_v)$ -representation π_v can belong to $\Pi_{\Psi,v} \cap \Pi_{\Psi',v}$, even when $\Pi_{\Psi,v}\neq \Pi_{\Psi',v}.$
- \bullet Yet, when π_v is spherical, there is at most a unique local Arthur packet Π containing it (Moeglin).
- \bullet These local packets Π are the anti-tempered packets, that is, Aubert-dual to the tempered local Arthur packets.
- Thus, in a global Arthur packet $\Pi_\Psi = \otimes'_v \Pi_{\Psi,v}$, for all but finitely many v , $\Pi_{\Psi,v}$ is an anti-tempered packet.

² [Second introduction: A cheap ideology](#page-8-0)

[Weak Arthur packets](#page-13-0)

[Weak sphericity \(main theorem\)](#page-19-0)

- [Nilpotent cone geometry](#page-29-0)
	- [Relative special pieces](#page-30-0)
	- [Lusztig's canonical quotients](#page-33-0)

Size of representations of p -adic groups

- Now, G is a reductive p-adic group. i.e. $G = \mathrm{Sp}_{2n}(\mathbb{Q}_p)$.
- \bullet $V_{\text{/C}}$ an irreducible smooth representation $G \curvearrowright V$.
- Usually V is infinite-dimensional. Still, how to quantify its 'size'?
- Maybe use compact subgroups $K < G$, because, by admissibility $\dim(V^K)<\infty$.
- Fix a basis of open compact subgroups

... $K_{i+1} < K_i < \ldots < K_0 < G$, $\bigcap_i K_i = \{e\}$

• Since
$$
V = \bigcup_i V^{K_i}
$$
, $\lim_{i \to \infty} \dim(V^{K_i}) = \infty$.

(Vague) invariants

- The Gelfand-Kirillov dimension $\operatorname{GKdim}(V)$ measures the rate by which $\dim(V^{K_i})$ grows. (It can be determined by the algebraic wavefront set.)
- The 'depth' of V looks at the minimal i, for which $\dim(V^{K_i})>0$.
- What is the relation between them?
- **•** Specifically, what are the smallest representations with respect to the two invariants?

Minimizers

- Irreducible representations with minimal GKdim are a known source of interest.
- \bullet When G is split, minimal 'depth' can be taken as the class of spherical representations. i.e. taking K_0 to be the hyperspecial maximal compact subgroup.
- Meta-claim: The two notions of small size are related.

Example and speculations

- Each irreducible spherical representation of $GL_n(F)$ (F a p-adic field) is the unique representation with minimal GKdim among irreducible representations on same supercuspidal support. (Follows from classical results of Moeglin–Waldspurger and Zelevinsky.)
- Speculations Same may/should remain true for other reductive groups, with the following adjustments:
	- supercuspidal support \rightarrow infinitesimal character.
	- spherical \rightsquigarrow weakly spherical (drop hyperspecial restriction!).
	- \bullet unique \rightsquigarrow share a local Arthur packet.

[Second introduction: A cheap ideology](#page-8-0)

³ [Weak Arthur packets](#page-13-0)

[Weak sphericity \(main theorem\)](#page-19-0)

[Nilpotent cone geometry](#page-29-0)

- [Relative special pieces](#page-30-0)
- [Lusztig's canonical quotients](#page-33-0)

Classical groups and their Langlands reciprocity

- From now, G is either $\text{Sp}_{2n}(F)$ or $\text{SO}_{2n+1}(F)$, for a p-adic field F.
- Langlands dual group G^{\vee} is then either $\mathrm{SO}_{2n+1}(\mathbb{C})$ or $\mathrm{Sp}_{2n}(\mathbb{C})$.
- **Local Langlands Reciprocity: Each irreducible representation** $\pi \in \text{Irr}(G)$ has an L-parameter

$$
\phi_{\pi}: W_F \times SL_2(\mathbb{C}) \to G^{\vee}
$$

attached to it (up to conjugation). W_F is the Weil group of the field.

Infinitesimal characters

• The *infinitesimal character* of $\pi \in \text{Irr}(G)$ is the composed homomorphism

$$
\chi_{\pi}: W_F \xrightarrow{w \mapsto \left(w, \begin{pmatrix} |w|^{1/2} & 0 \\ 0 & |w|^{-1/2} \end{pmatrix}\right)} W_F \times SL_2(\mathbb{C}) \xrightarrow{\phi_{\pi}} G^{\vee},
$$

up to conjugation.

- Terminology is motivated by an analogy to the natural notion for representations of real groups.
- For a spherical π , χ_{π} (Fr) is the Satake parameter classifying π .

Basic infinitesimal characters

- Let \mathcal{U}^\vee be the set of unipotent conjugacy classes in $G^\vee.$
- A class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$ gives by Jacobson–Morozov a homormorphism $\phi_{\mathcal{O}^\vee}:\operatorname{SL}_2(\mathbb{C})\to G^\vee$. i.e. $\phi_{\mathcal{O}^\vee}\left(\begin{pmatrix}1&1\0&1\end{pmatrix}\right)\in \mathcal{O}^\vee$
- We inflate $\phi_{\mathcal{O}}$ into a *basic L*-parameter

$$
\phi_{\mathcal{O}^\vee}: W_F \times \mathrm{SL}_2(\mathbb{C}) \to G^\vee
$$

by making it trivial on W_F .

• Representations $\pi \in \text{Irr}(G)$ with $\phi_{\pi} = \phi_{\mathcal{O}} \vee$ are tempered, and their infinitesimal character we denote as $\chi_{\mathcal{O}}$.

$$
\mathcal{O}^\vee \quad \mapsto \quad \chi_{\mathcal{O}^\vee}
$$

Weak Arthur packets

- **Barbasch–Vogan have given a local meaning to the notion of an Arthur** packet for real groups. The following definition emulates their approach.
- \bullet For a unipotent conjugacy class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$, the set

$$
\Pi^w_{\mathcal{O}^\vee} = \left\{ \pi \in \text{Irr}(G) \; : \; \chi_\pi = \chi_{\mathcal{O}^\vee} \; , \; \begin{array}{l} \text{GKdim}(\pi) \leq \text{GKdim}(\pi'), \\ \forall \pi' \in \text{Irr}(G), \; \text{s.t.} \chi_{\pi'} = \chi_{\mathcal{O}^\vee} \end{array} \right\}
$$

is called a weak Arthur packet.

Spherical Arthur packets revisited

- For a conjugacy class $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$, there is a unique spherical representation $\pi \in \text{Irr}(G)$ with infinitesimal character (Satake parameter) $\chi_{\pi} = \chi_{\mathcal{O}} \vee$.
- Recall that a unique ('strong') local Arthur packet $\pi \in \Pi_{\mathcal{O}^\vee}$ is known to contain it.
- **•** The packet consists of all *anti-tempered* representations that admit $\chi_{\mathcal{O}}$ as their infinitesimal character. Namely, the representations in $\Pi_{\mathcal{O}^\vee}$ are those Aubert-dual to those admitting the tempered L-parameter ϕ_{Ω} .

Ciubotaru – Mason-Brown – Okada, 23' $\Pi_{\mathcal{O}^\vee} \subset \Pi_{\mathcal{O}^\vee}^w$

- [Second introduction: A cheap ideology](#page-8-0)
- [Weak Arthur packets](#page-13-0)

- [Nilpotent cone geometry](#page-29-0)
	- [Relative special pieces](#page-30-0)
	- [Lusztig's canonical quotients](#page-33-0)

Weak sphericity

- We say that a representation $(\pi, V) \in \text{Irr}(G)$ is weakly spherical, when a maximal compact subgroup $K < G$ exists, so that $V^K \neq \{0\}.$
- \bullet Our groups G have maximal compact subgroups that are not (conjugate to) hyperspecial:

$$
K_i = G \cap \left(\begin{array}{cc} \mathrm{GL}_i(\mathfrak{O}_F) & M_{i,N-2i}(\mathfrak{O}_F) & M_{i,i}(\mathfrak{p}_F^{-1}) \\ M_{N-2i,i}(\mathfrak{p}_F) & \mathrm{GL}_{N-2i}(\mathfrak{O}_F) & M_{N-2i,i}(\mathfrak{O}_F) \\ M_{i,i}(\mathfrak{p}_F) & M_{i,N-2i}(\mathfrak{p}_F) & \mathrm{GL}_i(\mathfrak{O}_F) \end{array} \right) < G .
$$

Here, $\mathfrak{p}_F < \mathfrak{O}_F < F$ is the ring of integers and its maximal ideal.

Weakly spherical Arthur packets

- We say that a local Arthur packet $\Pi_{\psi} \subset \text{Irr}(G)$ is weakly spherical, if it contains an anti-tempered weakly spherical representation $\pi \in \Pi_{\psi}$.
- Suspecture: Removing "anti-tempered" from the definition is harmless. (i.e. when an Arthur packet contains a weakly spherical representation, it must also contain an anti-tempered weakly spherical one.)

Main result: Symplectic case

G. – Okada (arXiv:2404.03485)

Let $\Pi \subset \text{Irr}(\text{Sp}_{2n}(F))$ be a local Arthur packet, whose constituents admit the infinitesimal character $\chi_{\mathcal{O}^\vee}$, for a unipotent conjugacy class \mathcal{O}^\vee of G^\vee .

Then, Π is weakly spherical, if and only if, $\Pi\subset\Pi_{\mathcal{O}^{\vee}}^{w}.$

Moreover, each weak Arthur packet $\Pi^w_{\mathcal{O}^\vee}$ is precisely the union of all weakly spherical Arthur packets whose constituents admit the infinitesimal character $\chi_{\mathcal{O}^{\vee}}$.

Thought process guide: One member of an Arthur packet minimizes 'depth', if and only if, all members of the packet minimize Gelfand-Kirillov dimension.

Example

- $G = \mathrm{Sp}_8(F)$ and \mathcal{O}^\vee the unipotent orbit in $\mathrm{SO}_9(\mathbb{C})$ corresponding to the partition 135.
- \bullet Tempered *L*-parameter is

$$
\phi_{\mathcal{O}^{\vee}} = 1 \otimes \nu_1 + 1 \otimes \nu_3 + 1 \otimes \nu_5 ,
$$

where ν_k is the k-dimensional irreducible $SL_2(\mathbb{C})$ -representation.

- The anti-tempered Arthur packet has 4 representations $\Pi_{\mathcal{O}^\vee} = \{\delta, \delta', \pi, \sigma\}.$
- δ is spherical, δ' is weakly-spherical (π is Iwahori-invariant, σ is supercuspidal).
- While $\Pi_{\mathcal{O}^\vee}$ is the only Arthur packet containing δ , there is another Arthur packet $\Pi_\psi = \{\delta', \sigma, \tau\}$ that contains $\delta'.$
- Indeed.

$$
\Pi^w_{\mathcal{O}^\vee} = \Pi_{\mathcal{O}^\vee} \cup \Pi_\psi = \{\delta, \delta', \pi, \sigma, \tau\} .
$$

Consequences/Observations

- Weak Arthur packets are unions of Arthur packets. That was proved in parallel by Liu–Lo.
- In particular, all constituents of weak Arthur packets are unitarizable, a conjecture of Ciubotaru–Mason-Brown–Okada is settled, and a nice analogy with the real groups case is seen.
- We see a 'weak' analogue to the stated Moeglin result about uniqueness of an Arthur packet that contains a given spherical representation: A weak Arthur packet is the unique 'packet' with infinitesimal character $\chi_{\mathcal{O}^\vee}$ containing (anti-tempered) weakly spherical representations.

'Awkwardness' in the orthogonal case

- $G = SO_{2n+1}(F)$ is not simply-connected, giving a central element $-I \in G^{\vee}$.
- \bullet Hence, L -parameters and their infinitesimal characters can all be tensored with the unramified quadratic character κ of W_F : $\chi_{-1,0}$.
- **•** Resulting operation on $\mathrm{Irr}(G)$ is tensoring with a quadratic character κ of G (abusing notation). Has to do with the spinor norm.
- Since κ may not be trivial on maximal compact groups (!) We say that a representation is -1 -weakly spherical when it has non-zero κ -equivariant vectors under a maximal compact subgroup.
- More Arthur packets and weak Arthur packets need to be naturally $introduced: \Pi_{-1,\mathcal{O}^\vee}, \Pi_{-1,\mathcal{O}^\vee}^w.$

Main theorem: Orthogonal case

G. – Okada

Let $\Pi \subset \text{Irr}(\text{SO}_{2n+1}(F))$ be a local Arthur packet, whose constituents admit the infinitesimal character $\chi_{s,\mathcal{O}^\vee}$, for a unipotent conjugacy class \mathcal{O}^\vee of G^\vee and $s \in \{\pm 1\}.$

Then, Π is $(-s)$ -weakly spherical, if and only if, $\Pi\subset\Pi^w_{s,{\mathcal{O}}^\vee}.$

Moreover, each weak Arthur packet $\Pi^w_{s,{\mathcal{O}}^\vee}$ is precisely the union of all $(-s)$ -weakly spherical Arthur packets whose constituents admit the infinitesimal character $\chi_{s,\mathcal{O}}\vee$.

Three theorems

Proof of our main theorem follows from three separate results.(Though could be nice to find a direct proof!)

- **Q** Explicit description of the Arthur packets that compose a weak Arthur packet. (extending Liu-Lo)
	- Main tool: Explicit knowledge of algebraic wavefront sets for unipotent representations (CMBO).

2 Identification of the weakly spherical spectrum in terms of the enhanced Langlands reciprocity.

Main tool: Kazhdan-Lusztig geometric constructions for affine Hecke algebras, and recent advances in Springer theory by Waldspurger and La.

3 Identification of Arthur packets that contain the weakly spherical spectrum.

Main tool: The theory of intersections of Arthur packets, as developed by Moeglin, Xu, Atobe.

Standalone interest

Question 1:

Which local Arthur packets (beyond the anti-tempered packet) are included in the weak Arthur packet $\Pi^w_{\mathcal{O}^\vee}$?

Question 2:

Which anti-tempered representations (in $\Pi_{\mathcal{O}^\vee}$) are weakly spherical?

The answers to both questions are given in terms of the structure of the nilpotent/unipotent cone of the dual group G^{\vee} .

- [Quick and biased review of local Arthur packets \(can skip\)](#page-2-0)
- [Second introduction: A cheap ideology](#page-8-0)
- [Weak Arthur packets](#page-13-0)
- [Weak sphericity \(main theorem\)](#page-19-0)
- ⁵ [Nilpotent cone geometry](#page-29-0)
	- [Relative special pieces](#page-30-0)
	- [Lusztig's canonical quotients](#page-33-0)

Special pieces

- The conjugacy classes (or, orbits) in \mathcal{U}^\vee are divided into equivalence classes known as special pieces.
- Each special piece consists of power-of-2 orbits. Toplogical order between them is the hypercube lattice.
- There is a (Barbasch–Vogan–Lusztig–Spaltenstein) duality map d from \mathcal{U}^{\vee} to the nilpotent orbits of $\mathrm{Lie}(G_{\overline{F}}).$ Special pieces may be defined as the fibers of that map.
- For an orbit $\mathcal{O}^{\vee} \in \mathcal{U}^{\vee}$, we set the relative special piece $\text{Spc}(\mathcal{O}^{\vee})$ of it, to be the set of orbits in \mathcal{U}^\vee that share a special piece with \mathcal{O}^\vee and are contained in its closure.
- Still $|\text{Spc}(\mathcal{O}^{\vee})| = 2^k$.

Weakly spherical Arthur parameters

- One meaningful invariant of Arthur parameters $\psi \in \Psi(G)$ is their SL_2 -type:
- Namely, when viewed as a homomorphism

$$
\psi: W_F \times SL_2^L(\mathbb{C}) \times SL_2^A(\mathbb{C}) \to G^{\vee} ,
$$

this is the restriction $\psi|_{\mathrm{SL}_2^A(\mathbb{C})}$, whose isomorphism class is again parameterized by an orbit $\overline{\mathcal{O}_{\psi}^{\vee}}\in\mathcal{U}^{\vee}.$

Proposition

For any $\mathcal{O}_1^\vee\in\mathcal{U}^\vee$ and any $\mathcal{O}_2^\vee\in\mathrm{Spc}(\mathcal{O}_1^\vee)$, there is a unique Arthur parameter $\psi = \psi_{\mathcal{O}_1^\vee, \mathcal{O}_2^\vee} \in \Psi(G)$ with infinitesimal character coming from \mathcal{O}_1^\vee and SL_2 -type \mathcal{O}_2^{\vee} .

$$
\chi_{\psi} = \chi_{\mathcal{O}_1^{\vee}} , \quad \mathcal{O}_{\psi}^{\vee} = \mathcal{O}_2^{\vee} .
$$

For example, $\Pi_{\psi_{\alpha} \vee \alpha} = \Pi_{\mathcal{O}^{\vee}}$ is the anti-tempered Arthur packet.

Weakly spherical Arthur packets

Theorem (G.-Okada)

For any unipotent orbit $\mathcal{O}^\vee_1\in \mathcal{U}^\vee$, the weak Arthur packet attached to it is decomposed as a (non-disjoint) union of $|\mathrm{Spc}(\mathcal{O}_1^\vee)|$ Arthur packets

$$
\Pi^w_{\mathcal{O}_1^\vee} = \bigcup_{\mathcal{O}_2^\vee \in \mathrm{Spc}(\mathcal{O}_1^\vee)} \Pi_{\psi_{\mathcal{O}_1^\vee, \mathcal{O}_2^\vee}} \;.
$$

Question 2:

Which anti-tempered representations (in $\Pi_{\mathcal{O}^\vee}$) are weakly spherical?

A side plot: Representation theory of Weyl groups

- Our groups G^{\vee} (and $G...$) have the finite group W_n of signed permutations as their Weyl group.
- For each unipotent conjugacy class \mathcal{O}^{\vee} in G^{\vee} . Springer theory constructs an action of W_n on the cohomology space $H^*(\mathcal{B}_{\mathcal{O}^\vee})$ of the variety of Borel subgroups of G^{\vee} containing a fixed representative of $u \in \mathcal{O}^{\vee}$.
- The component (2-)group $A(\mathcal{O}^\vee):=Z_{G^\vee}(u)/Z_{G^\vee}(u)^\circ$ acts on $H^*(\mathcal{B}_{\mathcal{O}^\vee})$ as well, commuting with the W_n -action.
- **•** Each irreducible local system $\rho \in \overline{A}(\mathcal{O}^{\vee})$ gives a W_n -representation

$$
\Sigma(\mathcal{O}^{\vee}, \rho) = \text{Hom}_{A(\mathcal{O}^{\vee})}(\rho, H^*(\mathcal{B}_{\mathcal{O}^{\vee}})) \ .
$$

Kazhdan–Lusztig K -theory construction

- \bullet For the principal block of representations of split p-adic groups, Kazhdan–Lusztig have adopted a Springer-like approach to construct Langlands reciprocity.
- I Idea is that these cases are equivalent to representation of an *affine Hecke* algebra, which is viewed as a quantized version of the affine Weyl group (of the p -adic group in question).
- Lusztig later extended this approach to treat all *unipotent* representations.
- Bottom line for our needs: A geometric construction and parameterization

$$
\Pi_{\mathcal{O}^\vee} = \left\{ \delta(\mathcal{O}^\vee, \rho) \, : \, \rho \in \widehat{A(\mathcal{O}^\vee)}_0 \right\}
$$

of anti-tempered representations is in place.

Weak sphericity translated to Springer theory

- Lusztig and Reeder showed that when " $q \rightarrow 1$ " ($q =$ residue characteristic of F) is suitably performed, one obtains the W_n -representation $\Sigma({\cal O}^{\vee}, \rho)$ out of the G-representation $\delta = \delta(O^{\vee}, \rho)$, whenever δ is Iwahori-invariant.
- Turns out weak-sphericity can be detected on the " $q \rightarrow 1$ " level!

Proposition

$$
\dim\left(\Sigma({\mathcal{O}}^\vee,\rho)^{W_i\times W_{n-i}}\right)=\dim\left(\delta({\mathcal{O}}^\vee,\rho)^{K_i}\right)
$$

Here, $W_i \times W_{n-i} \leq W_n$ is the (non-parabolic, in Coxeter formalism) subgroup of signed permutations perserving $\{1, \ldots, i\}$.

Green theory

- Want to know when is $\Sigma({\cal O}^{\vee}, \rho)^{W_i \times W_{n-i}} \neq \{0\}.$
- Recall, $\Sigma(\mathcal{O}^{\vee}, \rho)$ is not irreducible. Determining its decomposition to irreducible representations has to do with the theme of Green functions.
- Recently, Waldspurger devised closed formulas for such a decomposition for the $G^{\vee} = \mathrm{Sp}_{2n}(\mathbb{C})$ case. Methods were extended to $G^{\vee} = \mathrm{SO}_{2n+1}(\mathbb{C})$ by La.

Lusztig's canonical quotient

Theorem: Symplectic case (G.–Okada)

The representation $\delta(O^{\vee}, \rho)$ is weakly spherical, if and only if, the character ρ of the component group $A(O^{\vee})$ factor through Lusztig's canonical quotient.

- The subgroup $A^{\dagger}(\mathcal{O}^{\vee}) < \widehat{A(\mathcal{O}^{\vee})}$ of characters factoring through that quotient has its own history.
- Recall that each non-zero $\Sigma({\cal O}^\vee,\rho)$ has an *irreducible* summand $L(\mathcal{O}^{\vee}, \rho) = \text{Hom}_{A(\mathcal{O}^{\vee})}(\rho, H^{top}(\mathcal{B}_{\mathcal{O}^{\vee}})) \in \text{Irr}(W_n).$
- \bullet Irr(W_n) is divided into Kazhdan–Lusztig (two-sided) cells. Those are conveniently in bijection with the set of special pieces in $\mathcal{U}^{\vee}.$
- Achar–Sage: $A^{\dagger}(\mathcal{O}^{\vee})$ consists of those characters ρ , for which the KL cell of $L(\mathcal{O}^{\vee}, \rho)$ matches the special piece of \mathcal{O}^{\vee} .

Thank you for listening!