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Statement of Result

Notations

G Reductive group over C (for this talk, assumed simple)

G (O),G (K ) Arc (resp. loop) group of G

g Lie algebra of G

h∨ Dual Coxeter number

Λ̌,Λ Weight lattice / coweight lattice

W Weyl group for G

κ Non-degenerate W -invariant symmetric bilinear form on Λ

κ̌ Corresponding bilinear form on Λ̌

c κ̌ =
c − h∨

2h∨
κ̌min, where κ̌min(α̌i , α̌i ) = 2 for long roots α̌i
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Statement of Result

Kazhdan-Lusztig Equivalence

Theorem ([KL94])

If c ∈ C \Q, or c ∈ m

n
∈ Q<0 for (m, n) = 1 and m not too small, then

there exists a braided monoidal equivalence KLκ(G )♡ ≃ Repq(G )♡.

ĝκ Central extension of g((t)) given by the 2-cocycle κ

KLκ(G )♡ Abelian category of finitely generated, smooth,
G (O)-integrable ĝκ-modules at level κ

ULus
q (g) Lusztig’s quantum group specialized at q := e

πi
rc , where r is

the lacing number of g

Repq(G )♡ Abelian category of finite dimensional Λ̌-graded

ULus
q (g)-modules, where Kα̌i ∈ ULus

q (g) acts via grading
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Statement of Result

The K-L equivalence compares between two different ways to
quantize the classical category Rep(G )♡. At rational levels, the behavior
becomes much more complicated.

What about the BGG category O?

Let g -modB denote the (unbounded) derived category of
(g,B)-Harish-Chandra modules. Two ways to quantize:

ĝκ -modI , the derived category of (ĝκ, I )-Harish-Chandra modules,
where I is the Iwahori subgroup;

Repmxd
q (G ), the derived category of “mixed” quantum group

representations (coming up!)

At generic levels, both are equivalent to g -modB . Rational levels are more
interesting.
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Statement of Result

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)

If c ∈ C \Q, or c ∈ m

n
∈ Q for (m, n) = 1 and m not too small, then

there exists an equivalence of (DG) categories

ĝκ -modIren ≃ Repmxd
q (G )ren.

Renormalization is necessary for both sides; after doing so, neither side
is the derived category of its heart. The equivalence is not t-exact;

The proof is independent from the original one by K-L. Comparison
with K-L is ongoing work;

The RHS carries a braided monoidal structure (compatible with
Repq(G )♡); consequently it equips LHS with a (previously unknown)
braided monoidal structure. We do not yet know how to describe it
explicitly.
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Proof Strategy: Factorization

Proof Strategy

The following strategy works (only) for c > 0. The c < 0 case follows
formally via categorical duality.

ĝκ -modIren //

JKM∗ ≃
��

Repmxd
q (G )ren

JQuant
∗≃
��

ΩKM-FactModalg Riemann-Hilbert

≃ // ΩQuant-FactModtop

In general, given a lax monoidal functor F : C → D between monoidal
categories, it automatically factors as

C
Fenh−−→ F (1C ) -mod(D)

oblv−−→ D;

Fenh usually has a better chance to be an equivalence than F itself. Our
JKM∗ and JQuant

∗ will follow the factorizable version of this pattern.

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 8 / 29



Proof Strategy: Factorization

Proof Strategy

The following strategy works (only) for c > 0. The c < 0 case follows
formally via categorical duality.
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Proof Strategy: Factorization

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a
constructible sheaf, depending on the context.

A Λ̌<0-graded factorization algebra A is formally a sheaf on the
moduli space Conf of Λ̌<0-colored divisors on A1, with some more data.

At the level of !-fibers, such an object gives, among other things, a
vector space ι!

λ̌·x(A) for every λ̌ ∈ Λ̌<0, x ∈ A1(C).

Assume A is locally constant. The behavior as two distinct points x
and y collide into one then encode a certain (dg) algebra structure on

Aalg :=
⊕

λ̌∈Λ̌<0

ι!
λ̌·x(A).

∗-fibers encode a coalgebra structure on Acoalg :=
⊕

λ̌∈Λ̌<0

ι∗
λ̌·x(A).
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Proof Strategy: Factorization

Similarly, a Λ̌-graded factorization module M (supported at 0 ∈ A1)
over A is (among other data) a sheaf on the moduli space

Conf0 := {λ̌0 · 0 +
∑

i∈I ,|I |<∞

λ̌i · xi | λ̌0 ∈ Λ̌, λ̌i ∈ Λ̌<0, xi disjoint, xi ̸= 0};

As above, this encodes an Aalg-module structure on
⊕
λ̌0∈Λ̌

ι!
λ̌0·0

(M) and

an Acoalg-comodule structure on
⊕
λ̌0∈Λ̌

ι∗
λ̌0·0

(M).

To incorporate quantum levels, use twisted sheaves instead.

Riemann-Hilbert allows the comparison between algebraic
factorization modules (using D-modules) and topological ones (using
constructible sheaves).
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Quantum Side

Mixed Quantum Groups

Recall that both the Lusztig algebra ULus
q (n) and the Kac-De Concini

algebra UKD
q (n) can be realized as Hopf algebras internal to Repq(T )♡.

This has the effect of “hiding” Kα̌i into the background; e.g. we have

∆(Eα̌i ) = Eα̌i ⊗ 1 + 1⊗Eα̌i Eα̌i ∈ ULus
q (n).

The abelian category Repmxd
q (G )♡ consists of V ∈ Repq(T )♡ with a

locally nilpotent ULus
q (n) action and a compatible (arbitrary) UKD

q (n−)
action.

Repmxd
q (G )ren is the ind-completion of

{V ∈ Db(Repmxd
q (G )♡) s.t.

oblv(V ) ∈ UKD
q (n−) -mod(D(Repq(T )♡)) is compact}.
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Quantum Side

Proposition

There exists a topological factorization algebra ΩQuant and an equivalence
of DG categories JQuant

∗ : Repmxd
q (G )ren ≃ ΩQuant-FactModtop.

At abelian level, this is analogous to the main result of [BFS06].

Due to the need of working derivedly, we go down an entirely different
path, using (homotopical) Koszul duality and the language of E2-algebras,
building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of
our knowledge) the present work is its first formal implementation.

Remark

ι!
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Ext•ULus

q (n)(C,M), and

ι∗
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Tor•UKD

q (n−)(C,M).
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building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of
our knowledge) the present work is its first formal implementation.

Remark

ι!
λ̌·0(J

Quant
∗ (M)) is the λ̌-component of Ext•ULus

q (n)(C,M), and

ι∗
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Quant
∗ (M)) is the λ̌-component of Tor•UKD
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Affine Side

Lie Algebra Representation via Coherent Sheaves

Let G∧
1 denote the formal completion of G at the identity, and BG∧

1

its classifying prestack.

We have an equivalence of DG categories

g -mod ≃ IndCoh(BG∧
1 )

where IndCoh denotes ind-coherent sheaves developed in [GR20].

In [Ras20], S. Raskin extended this to the affine setting by developing
the theory of renormalized ind-coherent sheaves. It yields

g((t)) -mod
G(O)
ren ≃ IndCoh!ren(BG (K )∧G(O)),

where renormalization on both sides mean taking the ind-completion of
the category of objects induced from finite dimensional smooth
representations of G (O).

The infinite-dimensional theory bifurcates into the !-and the
∗-versions; here !-version is considered.
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Affine Side

To each κ one can assign a twisting (an infinitesimal gerbe) on
BG (K )∧G(O) and use it to twist the IndCoh category. A slight variant of
above is

KLκ(G )ren := IndCoh!ren,κ(BG (K )∧G(O)).

Proposition ([Ras20])

When restricted to bounded-below objects, the functor

KLκ(B)ren ≃ IndCoh!ren,κ(BB(K )∧B(O))
♠−→
≃

IndCoh∗ren,κ−κcrit
(BB(K )∧B(O))

∗-push−−−−→ IndCoh∗ren,κ−κcrit
(BT (K )∧T (O)) ≃ KLκ−κcrit(T )ren

coincides with Feigin’s semi-infinite cohomology C
∞
2

∗ (n((t)),N(O),−).

Here κcrit is the critical (a.k.a. Tate) shift, corresponding to c = 0.
Existence of (♠) is a distinguished feature of the renormalized theory.
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Affine Side

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories KLκ(G )ren whose
1-point fiber is KLκ(G )ren.

Among other things, this means that we have a DMod(A2)-module
KLκ(G )[2] such that

For every x ∈ A1(C) on the diagonal, the corresponding base change
gives Vect⊗DMod(A2)KLκ(G )[2] ≃ KLκ(G )ren;

For every (x , y) ∈ A2(C) where x ̸= y , the corresponding base change
gives Vect⊗DMod(A2)KLκ(G )[2] ≃ KLκ(G )ren⊗KLκ(G )ren;

The behavior as we approach the diagonal encodes the fusion structure of
KLκ(G ).
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Affine Side

Unitality means, for instance, that {x} ↪→{x , y} yields a map

insx⇝(x ,y) : KLκ(G )ren → KLκ(G )ren⊗KLκ(G )ren

given by M 7→ V0
κ ⊠M, where

V0
κ := Ind

KLκ(G)♡

Rep(G(O))♡
(C)

is the vacuum representation.

Similarly, to ĝκ -modIren we attach a factorizable module category
IKLκ(G ). Over A2, its diagonal fiber is ĝκ -modIren, and off-diagonal fiber
is KLκ(G )ren⊗ ĝκ -modIren.

It encodes the fusion action of KLκ(G ) on ĝκ -modI .
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Affine Side

Further, one has the notion of factorization algebras internal to
KLκ(G ).

Over A2, this is an element Ã ∈ KLκ(G )[2] whose diagonal fiber
is some A ∈ KLκ(G )ren and whose off-diagonal fiber is A⊠ A.

Factorization modules internal to IKLκ(G ) are similarly defined
(diagonal: M; off-diagonal: A⊠M), and unitality gives

ĝκ -modIren ≃ V0
κ-FactMod(IKLκ(G )).

For simplicity we write C
∞
2 := C

∞
2

∗ (n((t)),N(O),−). The map

ĝκ -modIren
Res−−→ KLκ(B)ren

C
∞
2−−−→ KLκ−κcrit(T )ren is a lax-unital factorizable

functor, and thus factors through an “enhanced” map

C
∞
2

enh : ĝκ -modIren → C
∞
2 (V0

κ)-FactMod(KLκ(T )).
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Affine Side

Further, one has the notion of factorization algebras internal to
KLκ(G ). Over A2, this is an element Ã ∈ KLκ(G )[2] whose diagonal fiber
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enh : ĝκ -modIren → C
∞
2 (V0

κ)-FactMod(KLκ(T )).

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 19 / 29



Affine Side

Further, one has the notion of factorization algebras internal to
KLκ(G ). Over A2, this is an element Ã ∈ KLκ(G )[2] whose diagonal fiber
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Affine Side

Proposition (“Torus FLE”)

There exists an equivalence of factorizable crystals of categories

FLET : KLκ(T )ren ≃ DModκ̌(GrŤ );

where GrŤ is the affine Grassmannian for the dual torus Ť .

This is again a folklore which we prove for the first time.

We define ΩKM := FLET ◦ C
∞
2 (V0

κ). The resulting functor

FLET ◦ C
∞
2

enh : ĝκ -modIren → ΩKM-FactMod(DModκ̌(GrŤ ))

factors through a map

JKM∗ := FLET ◦ C
∞
2

enh : ĝκ -modIren → ΩKM-FactModalg.
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Affine Side

Recall our strategy:

ĝκ -modIren //

JKM∗ ≃
��

Repmxd
q (G )ren

JQuant
∗≃
��

ΩKM-FactModalg Riemann-Hilbert

≃ // ΩQuant-FactModtop

We have argued that JQuant
∗ is an equivalence. The remaining tasks are:

Showing that ΩKM and ΩQuant match up under Riemann-Hilbert; and

Showing that JKM∗ is an equivalence for c > 0.

Let us do the first part. Recall that, !-fiber of ΩQuant are components of
Ext•ULus

q (n)(C,C), and that of ΩKM are components of C
∞
2 (V0

κ).

Problem: neither is easy to compute / explicitly known.
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Affine Side

Matching Factorization Algebras

Proposition ([Gai21])

There exists an unique Λ̌<0-graded factorization algebra Ω such that:

if λ̌ /∈ Λ̌<0, then the !-fiber at λ̌x is zero;

the !-fiber at every λ̌x has no negative cohomology;

if λ̌ is a simple negative root, then either the ∗-fiber at λ̌x is C[1], or
the !-fiber at λ̌x is C[−1];

if λ̌ equals w(ρ̌)− ρ̌ for some ℓ(w) = 2, then the !-fiber at λ̌x
vanishes at H0 and H1, and ∗-fiber at λ̌x vanishes at H0 and H−1;

otherwise, the !-fiber at λ̌x vanishes at H0, and ∗-fiber at λ̌x vanishes
at H0, H−1 and H−2.

One can use direct computation (using e.g. Kashiwara-Tanisaki
localization) to verify this for both ΩKM and ΩQuant.
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Global Methods

Proving JKM∗ is an Equivalence

The category ΩKM-FactModalg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals.

It suffices to show that
(co)standards map to (co)standards under JKM∗ .

Standards Costandards

ĝκ -modIren M !,λ̌
KM := Dcan(W1,−λ̌−2ρ̌

−κ [dim(n)]) M∗,λ̌
KM := Ww0,λ̌

κ

Ω-FactModalg M !,λ̌
fact (!-extensions) M∗,λ̌

fact (∗-extensions)

Dcan is the canonical (not contragredient) duality between ĝκ -modIren
and ĝ−κ -modIren.

W1,µ̌
−κ is the Wakimoto module (of type 1) of highest weight µ̌ and

level −κ. Ww0,λ̌
κ is the Wakimoto module of type w0 at level κ.
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and ĝ−κ -modIren.

W1,µ̌
−κ is the Wakimoto module (of type 1) of highest weight µ̌ and

level −κ. Ww0,λ̌
κ is the Wakimoto module of type w0 at level κ.

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 24 / 29



Global Methods

Proving JKM∗ is an Equivalence

The category ΩKM-FactModalg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals. It suffices to show that
(co)standards map to (co)standards under JKM∗ .

Standards Costandards
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Global Methods

Wakimoto modules are the
∞
2
-analogues of Verma modules.

At generic c , M !,λ̌
KM becomes the affine Verma module IndĝκLie(I )(C),

and M∗,λ̌
KM becomes the dual affine Verma module.

Our choice is made such that Homĝκ -modIren
(M !,λ̌

KM,N) gives the

λ̌-component of C
∞
2 (N). It follows from definition that M∗,λ̌

KM are right

orthogonals to M !,λ̌
KM and JKM∗ (M∗,λ̌

KM) ≃ M∗,λ̌
fact.

To show M !,λ̌
KM 7→ M !,λ̌

fact it suffices to compute the ∗-fiber of M !,λ̌
KM at

every µ̌x . Using contraction principle, this can be done by:

Placing another costandard object M∗,2ρ̌−µ̌
KM at ∞ ∈ P1;

!-pushing JKM∗ (M !,λ̌
KM,M∗,2ρ̌−µ̌

KM )0,∞|tot.deg.=2ρ̌ along the Abel-Jacobi
map AJ : Conf0,∞ → BunŤ (P

1);

Pairing with the (pushforward of) dualizing sheaf of the

(ω
1/2
P1 )2ρ̌-component of BunŤ (P

1).
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Global Methods

Localization

Set BunG (P1)0,∞ := BunG (P1)×(pt/G×pt/G) (pt/B × pt/B). There
exists a localization functor

Loc0,∞G : ĝκ -modI ⊗ ĝκ -modI → DModκ(BunG (P1)0,∞),

where the !-fiber at the trivial bundle is given by conformal block of the
two modules (placed at 0 and ∞) over P1.

Work of N. Rozenblyum [Roz11] tells us that there is also a chiral
localization functor

LocT ,Ω : C
∞
2 (V0

κ)-FactMod(KLκ−κcrit(T )ren) → DModκ−κcrit(BunT (P
1));

the !-fiber is more interesting here (intuitively, it computes conformal
block with C

∞
2 (V0

κ) occupying everywhere away from 0,∞).
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Global Methods

Let CT∗ : DModκ(BunG (P1)0,∞) → DModκ−κcrit(BunT (P
1)) denote

the !-pull-∗-push along

BunB(P1)

tt ))

BunG (P1)0,∞ BunT (P1)

(followed by a κcrit shift).

The final piece of folklore that we prove is the commutativity of the
following diagram:

ĝκ -modI
C

∞
2

//

Loc0,∞G
��

C
∞
2 (V0

κ)-FactMod(KLκ−κcrit(T )ren)

LocT ,Ω

��

FLET // ΩKM-FactModalg

AJ!
��

DModκ(BunG (P1)0,∞)
CT∗

// DModκ−κcrit(BunT (P1))
Fourier-Mukai

// DMod(κ−κcrit)−1(BunŤ (P1))

from which the ∗-fibers can be computed.
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