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Statement of Result

Notations

G Reductive group over C (for this talk, assumed simple)
G(0), G(K) Arc (resp. loop) group of G
g Lie algebra of G
h" Dual Coxeter number
A, A Weight lattice / coweight lattice
W Weyl group for G
% Non-degenerate W-invariant symmetric bilinear form on A

% Corresponding bilinear form on A
— RV
A C A v, v v v
€ k= ———F&min, Where Emin(&;, &) = 2 for long roots &;

2hY
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Kazhdan-Lusztig Equivalence

Theorem ([KL94])

IfceC\Q, orce % € Q<° for (m,n) =1 and m not too small, then

there exists a braided monoidal equivalence KL.(G)" ~ Repq(G)Q.

g, Central extension of g((t)) given by the 2-cocycle
KL,_E(G)QQ Abelian category of finitely generated, smooth,
G(O)-integrable §.-modules at level
Ué“s(g) Lusztig's quantum group specialized at g := e, where r is
the lacing number of g

Repq(G)Q Abelian category of finite dimensional A-graded
Ug"®(g)-modules, where Ky, € Ug"(g) acts via grading
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Statement of Result

The K-L equivalence compares between two different ways to
quantize the classical category Rep(G)Y. At rational levels, the behavior
becomes much more complicated.
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Statement of Result

The K-L equivalence compares between two different ways to

quantize the classical category Rep(G)Y. At rational levels, the behavior
becomes much more complicated.

What about the BGG category O7

Let g-mod® denote the (unbounded) derived category of
(g, B)-Harish-Chandra modules. Two ways to quantize:

o §,.-mod’, the derived category of (§, /)-Harish-Chandra modules,
where [ is the Iwahori subgroup;
mxd

® Repy™(G), the derived category of “mixed” quantum group
representations (coming up!)
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Statement of Result

The K-L equivalence compares between two different ways to
quantize the classical category Rep(G)Y. At rational levels, the behavior
becomes much more complicated.

What about the BGG category O7

Let g-mod® denote the (unbounded) derived category of
(g, B)-Harish-Chandra modules. Two ways to quantize:

o §,.-mod’, the derived category of (§, /)-Harish-Chandra modules,
where [ is the Iwahori subgroup;

S‘Xd(G), the derived category of “mixed” quantum group

representations (coming up!)

@ Rep

At generic levels, both are equivalent to g-mod®. Rational levels are more
interesting.
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Statement of Result

Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)

Ifce C\Q, orce T e Q for (m,n) =1 and m not too small, then
n
there exists an equivalence of (DG) categories

@r{ ‘mOd:en = Repg]Xd(G)ren .
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@r{ ‘mOdren = Repqud( G)ren .

@ Renormalization is necessary for both sides; after doing so, neither side
is the derived category of its heart. The equivalence is not t-exact;
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Main Result

Theorem (Lin Chen and C.F.; Conjectured by D. Gaitsgory)

Ifce C\Q, orce T e Q for (m,n) =1 and m not too small, then
n

there exists an equivalence of (DG) categories

@r{ ‘mOdlen = Repqud( G)ren .

@ Renormalization is necessary for both sides; after doing so, neither side
is the derived category of its heart. The equivalence is not t-exact;

@ The proof is independent from the original one by K-L. Comparison
with K-L is ongoing work;

@ The RHS carries a braided monoidal structure (compatible with
Repq(G)Q); consequently it equips LHS with a (previously unknown)
braided monoidal structure. We do not yet know how to describe it
explicitly.
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Proof Strategy: Factorization

© Proof Strategy: Factorization
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Proof Strategy

The following strategy works (only) for ¢ > 0. The ¢ < 0 case follows
formally via categorical duality.

de-mod! - —————— - + Rep™9(G)yen

ren

JfMlN NJJSUEM

QXM_FactMod QQuant_ FactMod:op

—>
alg Riemann-Hilbert
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The following strategy works (only) for ¢ > 0. The ¢ < 0 case follows

formally via categorical duality.

de-mod! - —————— - + Rep™9(G)yen

ren

JfMlN NJJSUEM

QXM_FactMod QQuant_ FactMod:op

—>
alg Riemann-Hilbert

In general, given a lax monoidal functor F : C — D between monoidal
categories, it automatically factors as

Fenh

¢ Ly F(1¢) -mod(D) 2% D

Fenn usually has a better chance to be an equivalence than F itself.
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Proof Strategy

The following strategy works (only) for ¢ > 0. The ¢ < 0 case follows
formally via categorical duality.

ﬁn mOdl 77777777 - Repq (G)ren

ren

JleN NJJSUEM

QXM_FactMod QQuant_ FactMod:op

—>
alg Riemann-Hilbert

In general, given a lax monoidal functor F : C — D between monoidal
categories, it automatically factors as

C L F(1¢)-mod(D) 2% p;

Fenn usually has a better chance to be an equivalence than F itself. Our
JEM and JQuant will follow the factorizable version of this pattern.
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Proof Strategy: Factorization

Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a
constructible sheaf, depending on the context.
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By a sheaf we mean either a regular holonomic D-module or a
constructible sheaf, depending on the context.

A A<C-graded factorization algebra A is formally a sheaf on the
moduli space Conf of A<C-colored divisors on A, with some more data.

At the level of I-fibers, such an object gives, among other things, a
vector space L!X.X(A) for every X € A<0, x € A}(C).

Assume A is locally constant. The behavior as two distinct points x
and y collide into one then encode a certain (dg) algebra structure on

Aalg 1= @ L!XX(A).
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Factorization Objects

By a sheaf we mean either a regular holonomic D-module or a
constructible sheaf, depending on the context.

A A<C-graded factorization algebra A is formally a sheaf on the
moduli space Conf of A<C-colored divisors on A, with some more data.

At the level of I-fibers, such an object gives, among other things, a
vector space L!X.X(A) for every X € A<0, x € A}(C).

Assume A is locally constant. The behavior as two distinct points x
and y collide into one then encode a certain (dg) algebra structure on

Aalg 1= @ L!XX(A).

XeA<o
. *
*-fibers encode a coalgebra structure on Acoalg 1= @ LXX(A).

XeA<o
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Proof Strategy: Factorization

Similarly, a A-graded factorization module M (supported at 0 € Al)
over A is (among other data) a sheaf on the moduli space

Confo:={Xo-0+ > X x|Xo €A k€A x disjoint, x; # 0};

iel,|l|l<oo
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To incorporate quantum levels, use twisted sheaves instead.
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Proof Strategy: Factorization

Similarly, a A-graded factorization module M (supported at 0 € Al)
over A is (among other data) a sheaf on the moduli space

v

Confo:={Xo-0+ > X x|Xo €A k€A x disjoint, x; # 0};

iel,|l|l<oo

As above, this encodes an A,g-module structure on @ L!/V\O_O(M) and
Xoeh
an Acoalg-comodule structure on @ L*/{O_O(M).
Xoeh
To incorporate quantum levels, use twisted sheaves instead.

Riemann-Hilbert allows the comparison between algebraic
factorization modules (using D-modules) and topological ones (using
constructible sheaves).
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9 Quantum Side
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Mixed Quantum Groups

Recall that both the Lusztig algebra Ucll'“s(n) and the Kac-De Concini
algebra UgD(n) can be realized as Hopf algebras internal to Repq(T)Q.
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Mixed Quantum Groups

Recall that both the Lusztig algebra Ucll'”s(n) and the Kac-De Concini

algebra UgD(n) can be realized as Hopf algebras internal to Repq(T)Q.

This has the effect of “hiding” K, into the background; e.g. we have

A(Ey) = Ex, ®1+1® Ey, Ex, € Ug*S(n).
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Mixed Quantum Groups

Recall that both the Lusztig algebra U'c;”s(n) and the Kac-De Concini

algebra U;.(D(n) can be realized as Hopf algebras internal to Repq(T)Q.
This has the effect of “hiding” K, into the background; e.g. we have

A(Ey) = Ex, ®1+1® Ey, Ex, € Ug*S(n).

The abelian category Repg”‘d(G)Qp consists of V € Repq(T)QQ with a

locally nilpotent Ub“s(n) action and a compatible (arbitrary) U;(D(n_)
action.
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Mixed Quantum Groups

Recall that both the Lusztig algebra Ub”s(n) and the Kac-De Concini

algebra U‘P;D(n) can be realized as Hopf algebras internal to Repq(T)Q.
This has the effect of “hiding” K, into the background; e.g. we have

A(Ey) = Ex, ®1+1® Ey, Ex, € Ug*S(n).

The abelian category Repg”‘d(G)Qp consists of V € Repq(T)QQ with a

locally nilpotent Ub“s(n) action and a compatible (arbitrary) U;(D(n_)
action.

mxd

Repg (G)ren is the ind-completion of

{V € DP(Rep]™(G)”) sit.

oblv(V) € U;D(n_)—mod(D(Repq(T)O)) is compact}.
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Proposition

There exists a topological factorization algebra QQUant 5nd an equivalence

of DG categories J*Q”a‘”t : Repq"‘Xd(G)ren ~ QQ“a”t—FactModtop.
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Proposition

There exists a topological factorization algebra QQUant 5nd an equivalence

of DG categories JS”E’”t : Repqm’(d(G)ren ~ QQ“a”t—FactModtop.

At abelian level, this is analogous to the main result of [BFS06].
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of DG categories JS”E’”t : Repqm’(d(G)ren ~ QQ“a”t—FactModtop.

At abelian level, this is analogous to the main result of [BFS06].

Due to the need of working derivedly, we go down an entirely different
path, using (homotopical) Koszul duality and the language of E,-algebras,
building upon the foundational work of Lurie in [Lur].
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Due to the need of working derivedly, we go down an entirely different
path, using (homotopical) Koszul duality and the language of E,-algebras,
building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of
our knowledge) the present work is its first formal implementation.
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Proposition

There exists a topological factorization algebra QQUant 5nd an equivalence

of DG categories JS”E’”t : Repqde(G),en ~ QQ“a”t—FactModtop.

At abelian level, this is analogous to the main result of [BFS06].

Due to the need of working derivedly, we go down an entirely different
path, using (homotopical) Koszul duality and the language of E,-algebras,
building upon the foundational work of Lurie in [Lur].

This idea has been folklore for around a decade, but (to the best of
our knowledge) the present work is its first formal implementation.

Remark

L!X.O(Jguant(M)) is the X-component of EXtZJ'c;US(n)((C7 M), and

L}O(JS”a”t(l\/l)) is the A-component of Torb(.;D(n,)((C, M).
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e Affine Side
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Affine Side

Lie Algebra Representation via Coherent Sheaves

Let G;* denote the formal completion of G at the identity, and BG;"
its classifying prestack.
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where IndCoh denotes ind-coherent sheaves developed in [GR20].
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Lie Algebra Representation via Coherent Sheaves

Let G;* denote the formal completion of G at the identity, and BG;'
its classifying prestack. We have an equivalence of DG categories

g-mod =~ IndCoh(BG/")

where IndCoh denotes ind-coherent sheaves developed in [GR20].

In [Ras20], S. Raskin extended this to the affine setting by developing
the theory of renormalized ind-coherent sheaves. It yields

a(()) -modret®) = IndCohle, (BG(K)(0)):

ren
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Let G;* denote the formal completion of G at the identity, and BG;'
its classifying prestack. We have an equivalence of DG categories

g-mod =~ IndCoh(BG/")

where IndCoh denotes ind-coherent sheaves developed in [GR20].
In [Ras20], S. Raskin extended this to the affine setting by developing
the theory of renormalized ind-coherent sheaves. It yields

a(()) -modret®) = IndCohle, (BG(K)(0)):

ren

where renormalization on both sides mean taking the ind-completion of
the category of objects induced from finite dimensional smooth
representations of G(O).
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Affine Side

Lie Algebra Representation via Coherent Sheaves

Let G;* denote the formal completion of G at the identity, and BG;'
its classifying prestack. We have an equivalence of DG categories

g-mod =~ IndCoh(BG/")

where IndCoh denotes ind-coherent sheaves developed in [GR20].

In [Ras20], S. Raskin extended this to the affine setting by developing
the theory of renormalized ind-coherent sheaves. It yields
G(O
a(()) -modret®) = IndCohle, (BG(K)(0)):
where renormalization on both sides mean taking the ind-completion of

the category of objects induced from finite dimensional smooth
representations of G(O).

The infinite-dimensional theory bifurcates into the !-and the
*-versions; here l-version is considered.
Iwahori Kazhdan-Lusztig February 22, 2022 15/29



Affine Side

To each k one can assign a twisting (an infinitesimal gerbe) on
IB%G(K)g(O) and use it to twist the IndCoh category. A slight variant of
above is

KLy(G)ren := IndCohye, . (BG(K)(0))-

ren, s
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Affine Side

To each k one can assign a twisting (an infinitesimal gerbe) on
IBG(K)/&(O) and use it to twist the IndCoh category. A slight variant of
above is

KL«(G)ren := IndCoh!,,, K(IB%G(K)/(}(O)).

Proposition ([Ras20])

When restricted to bounded-below objects, the functor

KLy (B)ren ~ IndCoh!_, K(IB%B(K)AB(O)) — IndCohy,, . Rcm(IB%B(K)AB(O))

*-push *
pUS |ndC0hren K—Ferit (BT(K)/-,\—(O)) ~ KL/‘f*Hcrit(T)ren

2 (n((t)), N(O), -).

coincides with Feigin's semi-infinite cohomology C

Here K/t is the critical (a.k.a. Tate) shift, corresponding to ¢ = 0.
Existence of (#) is a distinguished feature of the renormalized theory.
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Affine Side

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.
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Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.
Proposition

There exists an unital factorizable crystal of categories KL,,(G)ren whose
I-point fiber is KL (G)ren-
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Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories KL,,(G)ren whose
I-point fiber is KL (G)ren-

Among other things, this means that we have a DMod(A?)-module
KL (G)pz such that
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In the present work, we extend this theory to the factorizable setting.

Proposition

There exists an unital factorizable crystal of categories KL,,(G)ren whose
I-point fiber is KL (G)ren-

Among other things, this means that we have a DMod(A?)-module
KL (G)pz such that

@ For every x € A1(C) on the diagonal, the corresponding base change
gives Vect @pwmod(a?) KLk(G)2) = KLi(G)ren;
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Affine Side

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.
Proposition

There exists an unital factorizable crystal of categories KL,,(G)ren whose
I-point fiber is KL (G)ren-

Among other things, this means that we have a DMod(A?)-module
KL (G)pg such that

@ For every x € A1(C) on the diagonal, the corresponding base change
gives Vect @pwmod(a?) KLk(G)2) = KLi(G)ren;

o For every (x,y) € A%(C) where x # y, the corresponding base change
gives Vect @pwmod(a?) KLk(G) 2] = KLi(G)ren @ KL (G)ren;
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Affine Side

Factorizable Lie Algebra Representations

In the present work, we extend this theory to the factorizable setting.
Proposition

There exists an unital factorizable crystal of categories KL,,(G)ren whose
I-point fiber is KL (G)ren-

Among other things, this means that we have a DMod(A?)-module
KL (G)pg such that

@ For every x € A1(C) on the diagonal, the corresponding base change
gives Vect @pwmod(a?) KLk(G)2) = KLi(G)ren;

o For every (x,y) € A%(C) where x # y, the corresponding base change
gives Vect @pwmod(a?) KLk(G) 2] = KLi(G)ren @ KL (G)ren;

The behavior as we approach the diagonal encodes the fusion structure of
KL.(G).
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Affine Side

Unitality means, for instance, that {x} <—{x, y} yields a map
insy-.(xy) - KL (G)ren = KLi(G)ren © KLy (G)ren
given by M — V2 X M, where
0 . 1. 4KL<(G)®
V. = IndRep(G(O))@((C)

is the vacuum representation.
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Affine Side

Unitality means, for instance, that {x} <—{x, y} yields a map
insy-.(xy) - KL (G)ren = KLi(G)ren © KLy (G)ren

given by M +— Vg X M, where

KL, (G)Y

0._
V. = IndRep(G(O))@((C)

is the vacuum representation.

Similarly, to §, -mod!,, we attach a factorizable module category
TKL,(G). Over A2, its diagonal fiber is §, -mod’,,, and off-diagonal fiber
is KLy.(G)ren ® §x -mod!

ren-
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Affine Side

Unitality means, for instance, that {x} <—{x, y} yields a map
insy-.(xy) - KL (G)ren = KLi(G)ren © KLy (G)ren

given by M +— Vg X M, where

KL, (G)Y

0._
V. = IndRep(G(O))@((C)

is the vacuum representation.

Similarly, to §, -mod!,, we attach a factorizable module category
TKL,(G). Over A2, its diagonal fiber is §, -mod’,,, and off-diagonal fiber
is KLy.(G)ren ® §x -mod!

ren-

It encodes the fusion action of KL.(G) on §,.-mod’.
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Affine Side

Further, one has the notion of factorization algebras internal to
KL (G).

Charles Fu (Harvard University) lwahori Kazhdan-Lusztig February 22, 2022 19 /29



Affine Side

Further, one has the notion of factorization algebras internal to
KL,.(G). Over A% this is an element A € KL (G)pz whose diagonal fiber
is some A € KL;(G)ren and whose off-diagonal fiber is AKX A.

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 19 /29



Affine Side

Further, one has the notion of factorization algebras internal to
KL,.(G). Over A% this is an element A € KL (G)pz whose diagonal fiber
is some A € KL, (G)yen and whose off-diagonal fiber is AKX A.

Factorization modules internal to ZKCL,;(G) are similarly defined
(diagonal: M; off-diagonal: AKX M), and unitality gives

d, -mod’,,, ~ VO-FactMod(ZK L, (G)).

ren —

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 19 /29



Affine Side

Further, one has the notion of factorization algebras internal to
KL,.(G). Over A% this is an element A € KL (G)pz whose diagonal fiber
is some A € KL;(G)ren and whose off-diagonal fiber is AKX A.

Factorization modules internal to ZKCL,;(G) are similarly defined
(diagonal: M; off-diagonal: AKX M), and unitality gives

d, -mod’,,, ~ VO-FactMod(ZK L, (G)).

ren —

For simplicity we write C2 := C?(n((t)), N(O),—). The map
@,.C—modfen Res, KLx(B)ren 2, KLy —reie (T )ren is a lax-unital factorizable

functor, and thus factors through an “enhanced” map

[eS]

C2, : i -modly, — C2 (VO)-FactMod(KL,(T)).
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Affine Side

Proposition (“Torus FLE")

There exists an equivalence of factorizable crystals of categories
FLET : KLx(T)ren ~ DModi(Gry);

where Gry is the affine Grassmannian for the dual torus T.
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There exists an equivalence of factorizable crystals of categories
FLET : KLx(T)ren ~ DModi(Gry);

where Gry is the affine Grassmannian for the dual torus T.

This is again a folklore which we prove for the first time.

We define QM .= FLET o C2 (V?).
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Affine Side

Proposition (“Torus FLE")

There exists an equivalence of factorizable crystals of categories
FLET : KLx(T)ren ~ DModi(Gry);

where Gry is the affine Grassmannian for the dual torus T.

This is again a folklore which we prove for the first time.

We define QXM := FLET o C2 (V?). The resulting functor
FLET o C2, : fix-mod’y, — Q¥M_FactMod(DModx(Gr+))
factors through a map

o0
2

JM— FLET 0 C2, : g -modly, — Q"M-FactMod,.
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Affine Side

Recall our strategy:

@,{—modlen ffffffff Y Remed(G)ren

JL(MJ: :nguant

QXM_FactMod QQuaNt_FactModop

—>
alg Riemann-Hilbert
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JL(MJ: :nguant

QXM_FactMod QQuaNt_FactModop

—>
alg Riemann-Hilbert

We have argued that J2" is an equivalence. The remaining tasks are:
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We have argued that J2" is an equivalence. The remaining tasks are:

o Showing that QXM and QQU2" match up under Riemann-Hilbert; and

o Showing that J*M is an equivalence for ¢ > 0.

Charles Fu (Harvard University) Iwahori Kazhdan-Lusztig February 22, 2022 21/29



Affine Side

Recall our strategy:

G -mod/g, — - — - — - — - + Remed(G)ren

JL(MJ: :nguant

QXM_FactMod QQuaNt_FactModop

—>
alg Riemann-Hilbert

We have argued that J2" is an equivalence. The remaining tasks are:

o Showing that QXM and QQU2" match up under Riemann-Hilbert; and

o Showing that J*M is an equivalence for ¢ > 0.

Let us do the first part.
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Affine Side

Recall our strategy:

G -mod/g, — - — - — - — - + Repg‘Xd(G)ren

J*KMJ: :nguant

QXM_FactMod QQuaNt_FactModop

=
alg Riemann-Hilbert

We have argued that J2" is an equivalence. The remaining tasks are:

o Showing that QXM and QQU2" match up under Riemann-Hilbert; and

o Showing that J*M is an equivalence for ¢ > 0.

Let us do the first part. Recall that, I-fiber of QR are components of
EXthé_us(n)(C7C), and that of QM are components of C2 (V?).
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Affine Side

Recall our strategy:

G -mod/g, — - — - — - — - + Repg‘Xd(G)ren

J*KMJ: :nguant

QXM_FactMod QQuaNt_FactModop

=
alg Riemann-Hilbert

We have argued that J2" is an equivalence. The remaining tasks are:

o Showing that QXM and QQU2" match up under Riemann-Hilbert; and

o Showing that J*M is an equivalence for ¢ > 0.

Let us do the first part. Recall that, !-fiber of QU2 are components of
EXth!q_us(n)((C7(C), and that of QM are components of C2 (V?).

Problem: neither is easy to compute / explicitly known.
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Matching Factorization Algebras

Proposition ([Gai21])
There exists an unique A<-graded factorization algebra Q such that:
o if X\ ¢ A<C, then the \-fiber at Ax is zero;
o the |-fiber at every Ax has no negative cohomology;
o if\isa simple negative root, then either the x-fiber at Xx is C[1], or
the !-fiber at Ax is C[—1];
o if X equals w(p) — j for some £(w) = 2, then the |-fiber at Ax
vanishes at H® and H', and *-fiber at \x vanishes at H® and H™!;

o otherwise, the |-fiber at Ax vanishes at Ho, and x-fiber at \x vanishes
at H°, H™! and H2.

One can use direct computation (using e.g. Kashiwara-Tanisaki
localization) to verify this for both QKM and QQuant,
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© Global Methods
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Global Methods

Proving J*M is an Equivalence

The category QK'\/'—anctModa|g has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals.
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Global Methods

Proving J*M is an Equivalence

The category QKM—FactModaﬂg has a highest weight structure: it
contains standard objects which are compact generators, and costandard
objects which are their right orthogonals. It suffices to show that
(co)standards map to (co)standards under JKM.

Standards Costandards
Go-modre, Mgy =DM (WL P [dim(w)])
Q-FactMod,g I\/If!‘,;’c\t (!-extensions) M;;C); (*-extensions)
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Global Methods

KM -
J,

Proving is an Equivalence

The category QK'\/'—anctModa|g has a highest weight structure: it
contains standard objects which are compact generators, and costandard

objects which are their right orthogonals. It suffices to show that
(co)standards map to (co)standards under JKM.

Standards Costandards
fo-modly, Mgy = DEN(WhA P dim(n)])
Q-FactMod,g Mfai\t (!-extensions) M;;iﬁc (*-extensions)

D" is the canonical (not contragredient) duality between §,. -mod!

and g modren

W is the Wakimoto module (of type 1) of highest weight ji and
level —k.
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Global Methods

KM -
J,

Proving is an Equivalence

The category QK'\/'—anctModa|g has a highest weight structure: it
contains standard objects which are compact generators, and costandard

objects which are their right orthogonals. It suffices to show that
(co)standards map to (co)standards under JKM.

Standards Costandards
A d[ M',S\ ; Dcan W )\ 2p d M*,;\ - WW&X
gr -MOd ¢ KM - (W2, [dim(n)]) K K
Q-FactMod,g Mfai\t (!-extensions) M;;iﬁc (*-extensions)

D" is the canonical (not contragredient) duality between §,. -mod!
and §_,-mod!_ .

W s the Wakimoto module (of type 1) of highest weight /i and
level —k. W,:VO’ is the Wakimoto module of type wy at level .
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Global Methods

. 00
Wakimoto modules are the 7—ana|ogues of Verma modules.

At generic c, Mll(i‘,l becomes the affine Verma module Indgfe(l)((C),

and M,i,\)/‘l becomes the dual affine Verma module.
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Wakimoto modules are the 7—ana|ogues of Verma modules.

At generic c, Mll(i‘,l becomes the affine Verma module Indgfe(l)((C),

and M;,\)/‘I becomes the dual affine Verma module.

Our choice is made such that Hom, (Mki‘/l, N) giyes the
X-component of CZ (N). It follows from definition that I\/I;,\),‘I are right

orthogonals to I\/I;ﬂ’\\,I and J*KM(M;’,(}) o~ M;;é\t

I
x -mod,e,
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orthogonals to I\/I;ﬂ’\\,I and JfM(M;’,(}) o~ M;;é\t

I
x -mod,e,

To show Mr'q/\\/l — M;;’c\t it suffices to compute the *-fiber of Mll(i‘,l at
every lix.
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Global Methods

. 00
Wakimoto modules are the 7—ana|ogues of Verma modules.

At generic c, Mll(i‘,l becomes the affine Verma module Indgfe(l)((C),

and M;,\)/‘I becomes the dual affine Verma module.

Our choice is made such that Hom, M:{i‘/l, N) giyes the
X-component of CZ (N). It follows from definition that I\/I;,\),‘I are right

orthogonals to I\/I;ﬂ’\\,I and JfM(M;’,\’}) o~ M;;é\t

5 —modﬁen(

To show Mr'q/\\/l — M;;’c\t it suffices to compute the *-fiber of Mll(i‘,l at
every [ix. Using contraction principle, this can be done by:

@ Placing another costandard object M;f,lﬁ_ﬁ at co € PL;

@ !-pushing JfM(Ml!{i‘,l, M|?|\2/|pv_ﬂ)0,oo|tot.deg.:2ﬁ along the Abel-Jacobi
map AJ : Confy o, — Buny(PY);

e Pairing with the (pushforward of) dualizing sheaf of the
(wé?)zﬁ—component of Bun+(P*).
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Localization

Set Bung(P')o o := Bung(P?) X (pt/Gxpt/G) (Pt/B x pt/B). There
exists a localization functor
Loc%’oo : §i.-mod’ @ §,. -mod’ — DMod,(Bung(P!)o o),

where the !-fiber at the trivial bundle is given by conformal block of the
two modules (placed at 0 and co) over P!,
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Global Methods

Localization

Set Bung(P')o o := Bung(P?) X (pt/Gxpt/G) (Pt/B x pt/B). There
exists a localization functor

Loc%’oo : §i.-mod’ @ §,. -mod’ — DMod,(Bung(P!)o o),

where the !-fiber at the trivial bundle is given by conformal block of the
two modules (placed at 0 and co) over P!,

Work of N. Rozenblyum [Roz11] tells us that there is also a chiral
localization functor

LocT.q : €2 (V9)-FactMod(KLy .. (T )ren) — DMod,. ... (BunT(P'));

the I-fiber is more interesting here (intuitively, it computes conformal
block with C2 (V?) occupying everywhere away from 0, c0).
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Global Methods

Let CT. : DMod,(Bung(P*).«) — DMod,_ .. (Buny(P')) denote
the !I-pull-x-push along

BunB(IP’l)
\
Bung(P)o.0 Bunt(P?!)

(followed by a kit shift).
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Global Methods

Let CT. : DMod,(Bung(P*).«) — DMod,_ .. (Buny(P')) denote
the !I-pull-x-push along

BunB(IP’l)

\
Bung(P)o.0 Bunt(P?!)

(followed by a kit shift).
The final piece of folklore that we prove is the commutativity of the
following diagram:

g -mod’ — <= CF (V9)-FactMod(KLy .. T)ren) QXM_FactMod,

J{LOC%OC lLOCT'Q JAJ,

DMod,(Bung(P)o o) — DMody— s, (Bunt(P1)) miDMOd(K—ncrit)*l(B“”f(]Pl))

FLE

from which the *-fibers can be computed.
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