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One historical path

Let G be a reductive group, fix a maximal torus T and denote
the Weyl group by W = NG(T )/T , and similarly for its Lie
algebra g.

Around 1969, Grothendieck constructed a simultaneous
resolution of the singularities of the fibres of

G −→ G//G ' T/W

and suggested that (strictly) transverse slices to conjugacy
classes at subregular elements should yield universal
deformations of the corresponding Du Val-Klein (or “ADE”)
singularity, and similarly for the Lie algebra.
Around 1980, Slowody constructed suitable slices in the Lie
algebra, and studied this.
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Slodowy slices

They already appear in Harish-Chandra’s 1964 work on
invariant distributions on Lie algebras.

They play a crucial role in the classification of certain
infinite-dimensional representations appearing in the
Langlands program (“Whittaker representations”), due to
The fact that they are the semi-classical limits of finite
W -algebras (and their affine cousins).
Have recently been applied to reconstruct Khovanov
homology (Seidel-Smith, Abouzaid-Smith).
Appear in the work of numerous physicists on supersymmetric
gauge theories (Gaoitto, Witten, etc.).
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The Kostant Slice
Kostant’s slice: fixing a principal nilpotent element e in g, the
Jacobson-Morozov theorem furnishes an embedding
〈e, h, f 〉 = sl2 ↪→ g; set s := e + ker ad f ⊂ g. It comes with
two different cross section statements (from 1963 and 1978):

The composition

s ↪−→ g −� g//G ' t/W

is an isomorphism.
Denote by N+ = [B,B] the unipotent radical of a Borel
subgroup B, by N− its opposite.
The adjoint action map

N+ × s −→ e + n⊥+ =: µ−1(e)

is an isomorphism, where n⊥+ = b+ denotes the Killing form
complement to n+.
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The Steinberg Slice
For w ∈W , write

Nw := N+ ∩ w−1N−w =
∏
β∈Rw

Nβ,

where Rw is the set of positive roots made negative by w ,
and by Tw the points in T fixed by ẇ .

Steinberg’s slice comes with similar cross sections (1965): if G
is simply-connected and w a Coxeter element and S := ẇNw ,

S ↪−→ G −� G//G ' T/W

is an isomorphism.
Moreover, so is the conjugation action

N+ × S −→ N+ẇN+, (n, s) 7−→ n−1sn

(Proof of the second cross section is missing!!)
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The Steinberg Slice

Example
Let G = SLr+1 over a commutative ring A and consider the
Coxeter element w = s1 · · · sr . A suitable lift ẇ yields the
Steinberg slice of Frobenius companion matrices

ẇNw =
{


0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · 0 1

(−1)r cr · · · c2 c1

 : c1, . . . , cr ∈ A
}
.
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Generalisations

Slodowy slices are constructed out of nilpotent elements,
whereas Steinberg’s slice is constructed out of Coxeter
elements in the Weyl group.

In the late 1970s, Spaltenstein tried generalising Steinberg’s
slice to conjugates of Coxeter elements and noticed this
second cross section property fails in type A5 for

w = s2s1s4s3s5s4s3s2s1.

In 2011, Sevostyanov constructed slices out of Weyl group
elements whose “eigenspaces” in the reflection representation
can be ordered “nicely” w.r.t. the dominant Weyl chamber.
In 2012 (independently), He-Lusztig constructed slices of out
elliptic Weyl group elements (= no fixed points in the
reflection representation) which have minimal length.
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An example

Example
Let G = SL3 over a commutative ring and w := s1s2s1. The cross
section statement asks whether the conjugation map

1 n1 n12
0 1 n2
0 0 1

 ,
x1 x12 t
x2 −t−2 0
t 0 0


 ∈ N+ × ẇTwN+

to [
n12 t + x1 + n1 x2 −n1 t−2 + x12 − n1 (n12 t + x1 + n1 x2 ) n1 n2 t−2 + t − n2 x12 + (n1 n2 − n12 )(n12 t + x1 + n1 x2 )

n2 t + x2 −t−2 − n1 (n2 t + x2 ) n2 t−2 + (n1 n2 − n12 )(n2 t + x2 )
t −n1 t (n1 n2 − n12 )t

]
in N+ẇTwN+ is an isomorphism.
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Dissimilarity
Sevostyanov’s conditions work for some elements in each
conjugacy class

Lemma
But only for the two bipartite Coxeter elements

He-Lusztig: all elliptic elements of minimal length, e.g.:

Example
All Coxeter elements are elliptic, and in type A all elliptic elements
are conjugate to Coxeter elements.
Outside of type A, there are always more.

Sevostyanov’s 2019 computations show that in order to
construct strictly transverse slices to all conjugacy classes in
reductive groups, you need to use most non-elliptic classes.
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The braid monoid: definition

Weyl groups are examples of finite Coxeter groups, which have
a presentation

W = 〈s1, . . . , srk : sisjsi · · · = sjsisj · · · , s2
i = 1〉grp

The corresponding braid monoid is given by

B+ := B+
W := 〈b1, . . . , brk : bibjbi · · · = bjbibj · · · 〉mon

The corresponding (Artin-Tits) braid group is given by

B := BW := 〈b1, . . . , brk : bibjbi · · · = bjbibj · · · 〉grp
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The braid monoid: properties

The braid monoid B+ embeds into the braid group B.

Moreover, any element in B can be expressed as a “fraction”
of elements in B+ .
Matsumoto’s theorem furnishes a well-defined inclusion of sets

W −→ B+, w 7−→ bw

by picking any reduced expression w = sil · · · si1 and then
mapping w to bil · · · bi1 =: bil ···i1 =: bw . The elements bw are
called reduced/simple braids.
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The braid group: word problem

Emil Artin (1925) wanted to construct for each element of B
in type A a unique “word”, to be able to distinguish braids.

Example
Let W be of type A2 and consider

b1b2
?= b2b1,

b1b2b1
?= b2b1b2.
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The braid group: example

Example
Let W be of type A4 and consider

(b1b2b1b3b2b4)3 ?= b1b2b3b4b1b2b3b1b2b1b3b4b2b2b3b4b1b2.
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Deligne-Garside normal form: definition

Artin found a solution in type A (“braid/Artin combing”)

He then wanted to know when elements are conjugate, but
this “word” did not tell him when braids are conjugate
Garside gave a new solution to the word problem that also
solves the conjugacy problem (~1965).
Roughly speaking, the (right) Deligne-Garside normal form of
a b braid in B+ is obtained by decomposing it as a product of
reduced braids b = bwn · · · bw1 , and then making the
rightmost factors as large as possible.
So apparently this yields a unique expression

bwm · · · bw1 =: DGm(b) · · ·DG1(b).

We write DG(b) := DG1(b), and will often identify it with
the corresponding Coxeter group element w1.
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Garside gave a new solution to the word problem that also
solves the conjugacy problem (~1965).
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Deligne-Garside normal form: back to examples

Example
Let W be of type A2, now find

b1b2 = bs1bs2 = bs1s2 6= bs2s1 = b2b1,

b2b1b2 = b212 = b121 = b1b2b1.

Example
Let W be of type A4, now find

(b1b2b1b3b2b4)3 = b23b341231bw◦

= b1b2b3b4b1b2b3b1b2b1b3b4b2b2b3b4b1b2.
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He-Lusztig’s result

Recall: Steinberg’s claim is for Coxeter elements, e.g. s1 · · · srk
where rk is the rank of W (or G): the conjugation action

N+ × ẇNw
∼−→ N+ẇN+

is an isomorphism.

The cross sections of He-Lusztig apply to elliptic elements w
of minimal length in their conjugacy class, in the same way:

N+ × ẇNw
∼−→ N+ẇN+.
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He-Lusztig’s proof

Ultimately, consists of two major steps:

(1): Proven “directly” for all elements w , such that
DG(bd

w ) = w◦ for some integer d ≥ 1. From case-by-case
work (Geck-Michel), it was known then that this is true for
some elements of minimal length in each elliptic conjugacy
class, when d = ord(w).
(2): If it is true for an element w = xy with
`(w) = `(x) + `(y), then it is also true for w ′ := yx if
`(y) + `(x) = `(w ′). From case-by-case work (Geck-Pfeiffer),
it was known then that all elliptic elements of minimal length
are conjugate to each other by such cyclic shifts.
(2’): Simpler: if w and w ′ are conjugate by cyclic shifts and
DG(bd

w ) = w◦, then DG(bd ′
w ′) = w◦ for some d ′.
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He-Lusztig’s proof, tweaked

So it becomes, over any ring:

(1): Cross section holds if DG(bd
w ) = w◦ for some computable

integer d ≥ 1, say d = |R+| − `(w) + 1.
(2): This braid equation holds for all elliptic elements of
minimal length.

Lemma
Sevostyanov’s elliptic elements satisfy this braid equation.

Do his non-elliptic satisfy it? Rarely... but those slices are a
bit different!
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New definitions: firmly convex elements

Let W be a finite Coxeter group. An element w is called
firmly convex if:

the subset of roots Rw that it fixes, forms a standard parabolic
subroot system.
+ technical condition.

Lemma
Rw forms a standard parabolic subsystem if and only if the
complement R+\Rw is convex, i.e.:
If β0, β1 ∈ R+\Rw and c0, c1 ∈ R>0 are such that c0β0 + c1β1 is
again a root, then it lies in R+\Rw .
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New definitions: braid power bound

Definition
Let w◦ denote the longest element of W . Given a firmly convex
element w , let wf denote the longest element of the standard
parabolic subsystem Rw ; this yields a braid power bound

w◦wf .

Example
Let W be of type A3. If w is reflecting in α1 + α2 + α3, then this
is w◦s2.

So Rw◦wf = R+\Rw .

Wicher Malten Transverse slices in reductive groups



Background
He-Lusztig’s work

My work
End

New definitions: braid power bound

Definition
Let w◦ denote the longest element of W . Given a firmly convex
element w , let wf denote the longest element of the standard
parabolic subsystem Rw ; this yields a braid power bound

w◦wf .

Example
Let W be of type A3. If w is reflecting in α1 + α2 + α3, then this
is w◦s2.

So Rw◦wf = R+\Rw .

Wicher Malten Transverse slices in reductive groups



Background
He-Lusztig’s work

My work
End

New definitions: braid power bound

Definition
Let w◦ denote the longest element of W . Given a firmly convex
element w , let wf denote the longest element of the standard
parabolic subsystem Rw ; this yields a braid power bound

w◦wf .

Example
Let W be of type A3. If w is reflecting in α1 + α2 + α3, then this
is w◦s2.

So Rw◦wf = R+\Rw .

Wicher Malten Transverse slices in reductive groups



Background
He-Lusztig’s work

My work
End

New definitions: dominant elements

Definition
Let C denote the dominant Weyl chamber. For any w , let
Vw = im(id− w) denote the orthogonal complement to the subset
of fixed points ker(id− w) in the reflection representation.

Then w is called dominant if the closure C of C contains an open
subset of Vw .

Example
Reflection in a root is dominant if and only if this root is the
highest root or the highest short root.
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New definitions: dominant elements

Lemma
An involution has maximal length if and only if it is dominant.

Lemma
For any element w there are implications

elliptic or Sevostyanov element =⇒ dominant =⇒ firmly convex
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Transversality

Let G be a manifold (or variety), and let C and S be two
submanifolds. We say that the intersection C ∩ S is transverse
if for all g ∈ C ∩ S, we have

TgG = TgC + TgS.

We say that the intersection is strictly transverse if this is a
direct sum, i.e.

TgC ∩ TgS = {0}.
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Inspiration from braids
For any w , analysing roots shows that

RDG(bd
w ) ⊆ R+\Rw .

By the “convexity” lemma, this inclusion is strict if w is not
firmly convex; if it is firmly convex then it is equivalent to

DG(bd
w ) ≤ w◦wf

in the left weak Bruhat-Chevalley order.
We can modify Sevostyanov’s definitions to come up with a
cross section statement

N × ẇLwNw −→ NẇLwN,

for any firmly convex element w . Here N ⊆ N+ is generated
by root subgroups for roots in R+\Rw , whereas Lw is the
reductive subgroup “generated” by Rw and Tw .
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for any firmly convex element w . Here N ⊆ N+ is generated
by root subgroups for roots in R+\Rw , whereas Lw is the
reductive subgroup “generated” by Rw and Tw .

Wicher Malten Transverse slices in reductive groups



Background
He-Lusztig’s work

My work
End

Inspiration from braids
For any w , analysing roots shows that

RDG(bd
w ) ⊆ R+\Rw .

By the “convexity” lemma, this inclusion is strict if w is not
firmly convex; if it is firmly convex then it is equivalent to

DG(bd
w ) ≤ w◦wf

in the left weak Bruhat-Chevalley order.
We can modify Sevostyanov’s definitions to come up with a
cross section statement
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From braids to cross sections

Can now modify the He-Lusztig proof to:

Theorem
If w is firmly convex and for some d ≥ 1 we have

DG(bd
w ) = w◦wf ,

then the conjugation map

N × ẇLwNw −→ NẇLwN, (n, s) 7−→ n−1sn

is an isomorphism, over any commutative ring.

Lemma
He-Lusztig’s and Sevostyanov’s elements satisfy this equation.
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More?

How about Poisson structures?

How about transversality?
How about strict transversality?
How about the converse?
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Poisson structures

In the late 90s, some people tried to obtain quantum
analogues of finite W -algebras, but failed to obtain suitable
characters.

Sevostyanov ’99 succeeded, by slightly “modifying” the
Drinfeld-Jimbo quantum group UqG .
Can reinterpret his solution as a Drinfeld twist.
Quasiclassically, this twist corresponds to modifying the
Semenov-Tian-Shansky bracket on G . Using the cross section
isomorphism, can show:

Lemma
This Poisson bracket reduces to a Poisson bracket on the slices if
and only if such a twist is made.
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isomorphism, can show:

Lemma
This Poisson bracket reduces to a Poisson bracket on the slices if
and only if such a twist is made.
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Transversality again

Sevostyanov deduces transversality by combining the cross
section statement for w and the cross section statement for
w−1.

So we would need: DG(bd
w ) = w◦wf if and only if

DG(bd ′
w−1) = w◦wf .

Example
Consider w = s3s1s2s3 in type B3; it does not fix any roots so it is
closed, but for any integer d > 1 we have

DGN(bd
w ) = bd

w and DGN(bd
w−1) = b323bd−2

w b13213.

We will see that this is true, with d ′ = d . Surprising...
because normally DG(bd

w ) and DG(bd
w−1) are very different!
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The converse

The cross section statement is almost a statement about
roots.

But what is the identity DG(bd
w ) = w◦wf really doing in the

proof?
It’s trying to make all the roots in R+\Rw negative, step by
step:

DG(bd
w ) = w◦wf =⇒ crossd

w (R+\Rw ) = ∅
=⇒ cross section is isomorphism
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Crossing roots

Definition
For any positive root β and w , we obtain a subset of positive roots

crossw (β) :=
{
w(β+

m∑
i=1

βi) ∈ R : β1, . . . , βm ∈ Rw ,m ≥ 0
}
∩R+

and for a subset of positive roots N ⊆ R+ we set

crossw (N) :=
⋃
β∈N

crossw (β).

Example
What is crossw (β) when β lies in Rw? When w(β) is simple?
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Crossing roots

Lemma
For any simple root α not in Rw , the set crossw (α) contains
simple roots.

Implies: For any other element v of W and integer d ≥ 0,

DG(bd
w ) ≥ v if and only if crossd

w (Rv ) = ∅,

if and only if crossd
w (Rv ) does not contain any simple roots.

In particular: w is firmly convex and satisfies the braid
equation DG(bd

w ) = w◦wf if and only if
crossd

w (R+\Rw ) = ∅.
And that easily implies: if w is firmly convex then
DG(bd

w ) = w◦wf if and only if DG(bd
w−1) = w◦wf .
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Strict transversality: minimally dominant elements

Definitions
A dominant element is called minimally dominant if its length is
minimal among the dominant elements in its conjugacy class.

Example
For elliptic conjugacy classes, “minimally dominant” = “has
minimal length”.

Lemma
For (nontrivial) non-elliptic conjugacy classes, minimally dominant
elements never have minimal length.
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Braid powers of minimally dominant elements

Geck-Michel/He-Nie: Every elliptic conjugacy class contains
an element w of minimal length such that DG(bord(w)

w ) = w◦

Geck-Pfeiffer/He-Nie: Elliptic elements of minimal length are
conjugate by cyclic shifts
Combine: ⇒ they all satisfy DG(bd

w ) = w◦ for some d

Lemma
Every conjugacy class contains a minimally dominant element w
such that DG(bord(w)

w ) = w◦wf , and
minimally dominant elements are conjugate by cyclic shifts

Combine: ⇒ they all satisfy DG(bd
w ) = w◦wf for some d

So by the previous theorem, they all yield transverse slices!
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Strict transversality and minimally dominant elements

In 2019, Sevostyanov showed that a subset of his elements
yield strictly transverse slices (by using Lusztig’s partition).

He already knew they were transverse, so his main ingredient
is a case-by-case dimension calculation.
Can show that these elements are all minimally dominant.
Can now deduce that all minimally dominant elements in
these conjugacy classes yield strictly transverse slices!
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Final statement

Theorem
Let C be a conjugacy class of a connected reductive group over an
algebraically closed field, and let w be a minimally dominant
element in the corresponding conjugacy class in Lusztig’s partition.

Then C is strictly transversally intersected by ẇLwNw , and this
slice inherits a natural Poisson structure.
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End

Thanks for listening!!
Questions? Ideas??
w.malten@gmail.com
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