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What’s a Harish-Chandra cell?

G(R) real reductive ⊃ K (R) = G(R)θ

G ⊃ K = Gθ complexifications, g = Lie(G)

Cartan and Borel h ⊂ b ⊂ g, W = W (g, h)

λ ∈ h∗ dom reg,M(g,K )λ = (g,K )-mods of infl char λ

Irr(g,K )λ = irr reps, KM(g,K )λ = Z · Irr(g,K )λ Groth grp.

Integral Weyl group W (λ) acts on KM(g,K )λ;! left reg rep of
W studied by Kazhdan-Lusztig.

Preorder ≤
LR

on Irr(g,K )λ: Kazhdan-Lusztig def is

Y ≤
LR

X ⇐⇒ ∃w ∈W (λ), [Y ] appears in w · X .

Rep-theoretic def is (with F fin-diml rep of Gad )

Y ≤
LR

X ⇐⇒ ∃F ,Y comp factor of F ⊗ X .

Equiv rel Y ∼
LR

X means Y ≤
LR

X ≤
LR

Y ; complement is Y <
LR

X .

A Harish-Chandra cell is an ∼
LR

equiv class in Irr(g,K )λ.
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What’s true about Harish-Chandra cells?
Theorem. (Consequence of rep theory defn of cells.)

1. Y ≤
LR

X =⇒ AV(Y ) ⊂ AV(X ).

2. Y <
LR

X =⇒ AV(Y ) $ AV(X ).

3. Y ∼
LR

X =⇒ AV(Y ) = AV(X ).

C(X ) =∼
LR

equiv class of X = HC cell ⊂ Irr(g,K )λ.

C(X ) =<
LR

interval below X = HC cone ⊂ Irr(g,K )λ.

∂C(X ) = C(X ) − C(X ).

Theorem. (Consequence of KL defn of cells).

1. W (λ) acts on CZ(X ) =
[ ∑
Y ≤

LR
X

ZY
]
⊃ ∂CZ(X ).

2. W (λ) acts on CZ(X ) ' CZ(X )/∂CZ(X ).
3. CZ(X ) contains unique special rep σ(X ) ∈ Ŵ (λ).
4. AV(X ) = union of closures of K -forms of O(σ(X )).

Cplx nilp orbit O(σ(X )) def by Springer corr.
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KL cells

Theorem (Kazhdan-Lusztig)

1. KL relations ∼
L

and ∼
LR

partition W into left cells and

two-sided cells CL(w) ⊂ CLR(w) (w ∈W ).

2. Z-module CZ,L(w) carries a rep of W .
3. CZ,LR(w) carries rep of W ×W .

4.
∑
CLR

CZ,LR ' ZW , regular representation of W .

5. Two-sided cells CLR partition Ŵ into subsets Σ(CLR)

called families: CZ,LR '
∑

σ∈Σ(CLR)

σ ⊗ σ∗.

6. As rep of the first W , CZ,LR '
∑

CL⊂CLR

CZ,L.
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Lusztig’s description of families
For any finite group F , Lusztig in 1979 defined

M(F ) = { (x , ξ) | x ∈ F , ξ ∈ F̂ x }/(conjugation by F )

The group F acts itself by conjugation;

M(F ) ' irr F -eqvt coherent sheaves on F .

Theorem (Lusztig) Suppose that Σ is a family in Ŵ .

1. Σ has one special representation σs(Σ) ∈ Ŵ .
2. σs ←→

Springer
special nilpotent orbit Os(Σ) = Os(σs) ⊂ N∗/G.

3. Write A(Os) = πG
1 (Os) (eqvt fund grp). Write

{σs = σ1, σ2 . . . , σr )} = Σ ∩ (Springer(Os))

all W -reps in Σ ←→
Springer

ξj ∈ Â(Os). Define

A = A(Os) = A(Os)/[∩j ker ξj ]

4. Have inclusion Σ ↪→M(A), σ 7→ (x(σ), ξ(σ)) so

x(σs) = x(σj ) = 1 ∈ A, ξ(σj ) = ξj ∈ Â.
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Lusztig’s description of left cells
Recall that finite group F gives

M(F ) = { (x , ξ) | x ∈ F , ξ ∈ F̂ x }/(conj by F

' irr conj-eqvt coherent sheaves E(x , ξ) on F .

Given subgroup S ⊂ F , const sheaf S on S is S-eqvt for conj.
Push forward to F -eqvt sheaf supp on F -conjs of S:

i∗(S) =
∑
s,ξ

mS(s, ξ)E(s, ξ), mS(s, ξ) = dim ξSs
.

Sum runs over S conj classes s ∈ S. Can write this as

i∗(S) =
∑

s

E(s, IndFs

Ss (triv)).

Theorem (Lusztig) CL ⊂ CLR ↔ Σ ⊂ Ŵ , A fin grp,

Σ ↪→M(A), σ 7→ (x(σ), ξ(σ)).

1. ∃ subgp Γ = Γ(CL) ⊂ A so CZ,L '
∑

x ,ξ mΓ(x , ξ)σ(x , ξ)
2. mΓ(1, triv) = 1, so special rep σs appears once in CZ,L.
3. ∃ Lusztig left cells with Γ = A, so CZ,L '

∑
x σ(x , triv).

4. G classical =⇒ ∃ Springer left cells with Γ = {e}, so
CZ,L '

∑
ξ∈Â

dim(ξ)σ(1, ξ), Springer reps for Os in Σ.
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Consequences of Lusztig for HC cells

HC world (g,K ): Irr(g,K )λ ⊃ C = HC cell W (λ) rep CZ.

CZ ⊃ σs(C) special in Ŵ (λ) O(C), Σ(O) ⊂ Ŵ , A(O) finite.

Theorem (McGovern, Binegar) C a HC cell in Irr(g,K )λ as above.

1. CZ =
∑
σ∈Σ mC(σ)σ, mC(σ) ∈ N, mC(σs) = 1.

2. G(R) real form of type A, SO(n), Sp(2n), or exceptional,
=⇒ ∃S(C) ⊂ A so mC(σ(x , ξ)) = mS(C)(x , ξ).

3. G(R) cplx, so O = O1 × O1, A(O) = A1 × A1, then
S(C) = (A1)∆, not one of Lusztig’s Γ unless A1 = 1.

4. In all other cases of (2), S(C) is one of Lusztig’s
subgroups Γ from description of left cells.

(McGovern) (4) fails for some forms of Spin(n),PSp(2n).

Conjecture. Part (2) is true for any HC cell C.

Next goal: relate cells to real forms of orbit, try to prove
conjecture in this way.
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Real forms of G

Pinning P = (G,B,H ,
{
Xα | α ∈ Π(B,H) ⊂ X ∗(H)

}
).

Langlands dual (∨G, ∨B, ∨H ,
{
X∨α | ∨α ∈ Π(∨B, ∨T )

}
).

dual pinning ∨P = (∨G, ∨B, ∨H ,
{
X∨α)

}
).

distinguished invs δ ∈ Aut(P), neg transpose ∨δ ∈ Aut(∨P).

Extended groups GΓ = G o {1, δ}, ∨GΓ = ∨G o {1, ∨δ}.

Here Γ = Gal(C/R); ∨GΓ is Galois form of LG.

Strong real form of G = G-conj class of x ∈ Gδ, x2 ∈ Z (G).

Strong form x  inv aut θx = Ad(x) Cartan for real form.

Summary: (conj classes of invs in G)! (R-forms of G).

Ex: G = GL(n), involution xpq =

(
Ip 0
0 −Iq

)
! U(p,q).

Coming up: (involution respecting ??)! (real form of ??).
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Real forms of nilpotents

Pinning P = (G,B,H , {Xα}).

θ Cartan inv g = k ⊕ s N = nilp cone ⊃ Nθ = N ∩ s.

Theorem (Jacobson-Morozov, Kostant, Kostant-Rallis)
O ⊂ g nilpotent orbit.

1. ∃ Lie triple (T ,E ,F ), [T ,E ] = 2E , [T ,F ] = −2F , [E ,F ] = T ,

E ∈ O; T ∈ h dom; T is unique φ : SL(2)→ G

Define g[j] = {X ∈ g | [T ,X ] = jX }. JM parabolic is

l = g[0], u =
∑
j>0

g[j], q = l+ u.

2. GE = (LE )(UE ) = GφUF Levi decomp.
3. BIJECTION (R-forms of O) (Gφ-conj classes

{` ∈ Gφ | `2 ∈ φ(−I)Z (G)}, ` 7→ R-form x = ` · φ

(
i 0
0 −i

)
}).

4. Summary: (conj classes of invs in Gφ)!(R-forms of O).
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Nilpotents in U(p,q)

Not presented in seminar.

Ex: G = GL(n), O! partition n = [mr1
1 , . . . ,m

rk
k ]

Here m1 > · · · > mk , ri > 0.

Gφ = GL(r1) × · · · ×GL(rk ).

Prev slide: (conj classes of invs in Gφ)!(R-forms of O).

Conj classes of relevant invs in Gφ: write rj = pj + qj ,

`j = imj−1
(
Ipj 0
0 −Iqj

)
Theorem (classical)

1. R-forms of O in (equal rank) GL(n)! [(pj ,qj )].
2. The real nilpotent O([(pj ,qj )]) is in U(p,q), where

p =
∑

j

pj [(mj +1)/2]+qj [mj/2], q =
∑

j

pj [mj/2]+qj [(mj +1)/2].

3. (What looks like) “natural most split form” O([rj ,0]) is in
U(

∑
rj [(mj + 1)/2],

∑
rj [mj/2]), which fails to be quasisplit

as soom as partition has at least three odd parts.
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Relation to cells

Vague conjs below are serious correction of statements in seminar.

Recall O nilpotent φ : SL(2)→ G, A(O) = Gφ/Gφ

0.

Recall HC cell C (one or more) R-forms of nilp O

 (one or more) `i ∈ Gφ involutions

 (one or more) symm subgps K φ

i ⊂ Gφ

 (one or more) subgps Ai = im(K φ

i ) ⊂ A(O) = Gφ/?

CONJECTURE (Cells attached to O) ≈ invs `i ∈ Gφ

CONJECTURE CONTINUED S(C(`)) ≈ A`

Theorem (Barbasch-Vogan) Harish-Chandra cells in “big block”
of reps of U(p,q) are indexed (by AV) by real forms of nilpotent
orbits. In particular, AV(X ) = closure of one nilpotent K -orbit.

To make conjs precise, thm general, look also at ∨G. . .
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