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Preliminaries

> F number field, A = Ar;

» G/F reductive;

> p: LG — GL(V,);

> 7= @pmy € AcusplG);

» According to R. Langlands, one should be able to define

L(s,m,p) Hstp,p)

v

By Langlands, L(s, 7, p) (actually the partial L-function) is
absolutely convergent for Re(s) large;
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Preliminaries

Langlands’ conjecture
L(s,m, p) has a meromorphic continuation to s € C, and the
functional equation

L(1-s, ﬂ_\/’ p) = e(s,m, p)L(s, 7, p)
holds where ¢(s, 7, p) is non-zero entire in s € C.

» The conjecture is known for a special list of (G, p);

» Methods: Godement-Jacquet (Tate), Rankin-Selberg;
Langlands-Shahidi; Trace formula;



Preliminaries

Natural question

Establish the basic analytic properties for L(s,, p) through
harmonic analysis on G (or related spherical varieties).
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> R. Godement and H. Jacquet established the M.C. and F.E. of
the standard L-function L(s,n) of GL, (over F-central simple
algebras) via harmonic analysis on GL, < M, generalizing
the work of Tate for n =1 (when n = 2 it was also done in
the last chapter of Jacquet-Langlands).

» G =GL,:

» LG = GL,(C) x WE, p =1d ® {trivial}.
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For convenience, let p be a non-archimedean place of F.
Ingredients

> Schwartz space S(G(Fy)) = C°(Mn(Fp))l6(F,):
» Fourier transform Fy, : S(G(F,)) — S(G(Fp));



Godement-Jacquet: Local theory

For f € S(G(Fp)), set
s—l—"—_1
Z(s. . om,) :/ F(8)pn(8)l detels 7 dg, seC,
6(F)

where ¢, € C(m,) (the space of matrix coefficients of ).
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Godement-Jacquet: Local theory

Theorem (Godement-Jacquet)

> Z(s,f,pr,) is absolutely convergent for Re(s) sufficiently
large, and is a rational function in q—*;

> the set {Z(s, f, goﬂp)] f e S(G(Fy)), Om, € C(mp)} is a
fractional ideal of C[q~*, g°] with generator (ql_s) where

P(q—°) is a polynomial with P(0) = 1. Set L(s, 7)) = ﬁ,’

» there exists a rational function (s, my, 1) in q~° such that
the following functional equation holds for any f € S(G(Fy))

Z2(1 =5, Fy,(F). ox,) = (s, mp, ) 2(5, F, o, )-

> Let 1, be the characteristic function of Mp(0p) C Mu(Fp).
Then Fy,(1p) = 1y and Z2(s, 1y, or,) = L(s,m,) for any
unramified representation m, and @, zonal spherical.
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Ingredients

» Schwartz space S(G(A)) = ®; S(G(Fp)) w.rt. {1p}pcoo;
> Fourier transform Fy = @&, Fy,;
» For f € S(G(A)), consider

=1
Z(s, f,%)=/c(A) f(g)px(g)|detgly = d*g, seC,

where ¢, € C(7).
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Godement-Jacquet: Global theory

Theorem (Godement-Jacquet)

» When Re(s) is sufficiently large, Z(s, f,r) is absolutely
convergent, and Z(s, f,¢r) =[], 2p(s, fy, ox,) whenever
f = @pfy Is a pure tensor.

» Z(s,f,pr) has a meromorphic continuation to s € C, and the
functional equation

Z(1— s, Fy(f), ©l) = Z(s,f, or)

holds.

» Meromorphic continuation and functional equation follow
from the Poisson summation formula for (S(G(A)), Fy).



Braverman-Kazhdan proposal

» Around 2000, A. Braverman and D. Kazhdan proposed a
conjectural framework to establish the analytical properties of
general automorphic L-functions L(s, T, p).

» The prototype of the proposal is the theory of Godement and
Jacquet.

For convenience, make the following additional assumptions (can
be removed)

Assumptions

> G/F split;

» p is obtained from an irreducible injective representation of
GY(C) with highest weight \,;

» o : G — G, a character playing the role of det for GL,;
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For convenience, let p be a non-archimedean place of F.
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Braverman-Kazhdan proposal: Local

Setup
> For f € S,(G(Fy)), set

2(sifom) = | A(@)on @@
G(Fp)

where @ € C(m)
» For geometric reason, may set

np = <pBaAP>

where pg is the half sum of positive roots
(Bouthier-Ngo-Sakellaridis).

» In general different n, differ by unramified shift;

seC,
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Braverman-Kazhdan proposal: Local

Expectation

» Z(s,f,pr,) is absolutely convergent for Re(s) sufficiently

large and is a rational function in g—%;

» The set {Z(s,f,on,)| f €S,(G(F)), pr, €C(mp)}isa
finitely generated fractional ideal in C(g—°) with generator
L(s, T, p);

> There exists a rational function y(s, my, p, 1) in g—* such that
the following functional equation holds for any f € S,(G(Fp))

Z(]- - Safpﬂﬁp(f)a @Xp) = ’7(5777;3797 ¢p)Z(57 fa <)0Wp)

where ¢, € C(mp);
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monoids studied by M. Putcha, L. Renner and E. Vinberg.
It is expected that S,(G(Fp)) is connected with the geometry
of M,;
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Braverman-Kazhdan proposal: Local

Schwartz space

» For any (G, p), there is an affine spherical embedding
G — M,, where M, arises from the theory of reductive
monoids studied by M. Putcha, L. Renner and E. Vinberg.
It is expected that S,(G(Fp)) is connected with the geometry
of M,;

» There should exist L, ,, € S,(G(F,))K»** called the basic
function, such that Z(s,L,, ¢x,) = L(s, ™, p) for any
unramified representation m, and ¢, zonal spherical;

» For Godement-Jacquet, M, = M,, L,, = 1;.
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Braverman-Kazhdan proposal: Local

Fourier transform
» Forany f € C°(G(Fp)),
T (F)(&) = lo (&) 2" H(Dpy, x FV)(8):

where &, is an invariant distribution on G(F,) such that

q)Pﬂ/Jp(Tr) = 7('771—7/)7 1/}}3) : Id7r;

> F,u, extends to a unitary operator on

L(G(Fy). lo(-)[*™ " dg) and Fiy, 0 F, o0 = 1d;

» For Godement-Jacquet, @, 4. (g) = ¥(tr(g))| det(g)|".
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Braverman-Kazhdan proposal: Local unramified
Theorem (L.)

» For p non-archimedean,
Sp(G(Fp))" 1% = Ly CZ(G(Fy)) 1
and

(D;(Ebp = Inverse Satake transform of y(—s — n,, mp, p’

The proposal is verified in full detail in unramified setting;

» For p archimedean, take L, , as the inverse Harish-Chandra

transform of L(s,m, p), then

Lpps =Loplo(-)]*, and (Dpw s pwpla( )I°

can be plugged into the Arthur-Selberg trace formula when

Re(s) large.
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Braverman-Kazhdan proposal: Global

Conjectural ingredients

> Schwartz space S,(G(A)) = ®; Sp(G(Fp)) w.rt. {Lyyp}p<oos
> Fourier transform 7, , = @, Fp.u:
> p-Poisson summation formula for (S,(G(A)), F, ).
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The work of Jiang-Luo-Zhang

P It is the first substantial case after the work of
Godement-Jacquet;

» Establish the analytical theory of L(s, 7, p) following the
approach of Godement-Jacquet, provide new evidence
substantially for the Braverman-Kazhdan proposal.
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The work of Jiang-Luo-Zhang

In the following, let F be a p-adic field.

>
>
>

G =Gpm X Spa,;
p - GV((C) =C* x SOQ,,.H((C) — GL2n+1((C);
It is closely related to the doubling method of

Piatetski-Shapiro and Rallis, the work of Lapid-Rallis, and
other more recent works;

The major work we need is the right normalization of the local
intertwining operators appearing in doubling method;
Piatetski-Shapiro and Rallis, Lapid-Rallis and other more
recent works found the right normalization which gave the
local Langlands ~y-factor via doubling local zeta integrals.
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Doubling method (Piatetski-Shapiro and Rallis)

(ana <'> >)v

Sp2n;

Sp2n X Sp2n — Sp4n via (F2n @ F2n7 <'7 > @ _<'7 >)v

P = MN = Stab(La) a Siegel parabolic in Sp,,,, where
Lan ={(v,v)| v €& F?"}isa Lagrangian;

vvyyy

v

Sp2n X SpZn — Sp4n - P\Sp4n

has Zariski open dense image, with stabilizer

P 1 (SPan X SPan) = SP3, < SPan X SPan;



The work of Jiang-Luo-Zhang

The following diagram illustrates the basic idea behind our work

Sp4n

|

MabwN Xp M2 (Sp,, x {I2n}) ~ G % Spy,

where Xp = [P, P]\Spa,, w = (Id2n, —Id2s) € Sps, X Spap,,
M2b = [M, M|\M ~ G,

» wPw = P~, M*PwN is Zariski open dense in Xp;

» G = Gp X Spy, is Zariski open dense in Xp;



ab

Harmonic analysis on M**wN — Xp

Fourier transform

» For f € C°(Xp(F)), define

pv 2n+1

Pl &)= [ el

/ f(wns(x)g)dndx.
N(F)

where 5 : G, — M is a section of M — [M, M\M ~ Gp;
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Harmonic analysis on M**wN — Xp

Fourier transform

» For f € C°(Xp(F)), define

pv 2n+1

Pl &)= [ el

/ f(wns(x)g)dndx.
N(F)

where 5 : G, — M is a section of M — [M, M\M ~ Gp;
> Npvs,p(X) is a distribution on F*, which is a key ingredient
towards the understanding of F, ;, and S,(G(F));

» The definition of 7y first appeared in
[Braverman-Kazhdan, 2002], but that definition of 7y, did
not carry enough analytical information for our work.
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Abelian harmonic analysis

» To understand the analytical nature of 7., we develop the
local harmonic analysis associated to 7,y in the spirit of
Braverman-Kazhdan proposal;

» An explicit formula for 7, 4 is obtained from the functional
equation associated to zeta integrals on the prehomogeneous
space (GL2pt1, Sont1), where Sy, is the space of
(2n+ 1) x (2n + 1) symmetric matrices. More precisely, for a
character y, the following zeta integral is considered

Z(s,f,x) = / fF(X)x(X)|det X|>~ ("1 gx;
Sont+1(F)

» The functional equation for the zeta integrals on (GL,, Sp) is
known by the work of Piatetski-Shapiro and Rallis, and T.
Ikeda.



Abelian harmonic analysis

The following diagram illustrates the idea

Cgo (52n+1) Fourier transform C?o(s2n+1)
\LF.I. iF-/-
+ x | ‘ e + x 222771:\/5,?/) X |-+ — X
Sn,ﬂ(F ) Spvs(F ) %’Spvs(/: )Tsn,ﬁ(F )
where

» F.l. is the fiber integration along det : Sop11 — F;

» £ is the induced linear transform.
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> £ is well-defined;
» St (F*) consists of functions f in C*°(F*), such that
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1. supp(f) is bounded, i.e. f(x) =0 for |x| > 0;



Abelian harmonic analysis

Theorem (JLZ)

> £ is well-defined;

> Ss(F*) consists of functions f in C*°(F*), such that
1. supp(f) is bounded, i.e. f(x) =0 for |x| > 0;
2. for x| <« 1,

f(x )=ao+(a0( ))Ix| ="

+Za,+ ac(x)) x|~ 4 af_(ac(x)) x|~ (~1)°H0)

where ag is a locally constant function on of that is

of -invariant, afjE are locally constant functions on of that are
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Abelian harmonic analysis

Theorem (JLZ)

> £ is well-defined;

> Ss(F*) consists of functions f in C*°(F*), such that
1. supp(f) is bounded, i.e. f(x) =0 for |x| > 0;
2. for x| <« 1,

f(x )=ao+(a0( ))Ix| ="

+Za,+ ac(x)) x|~ 4 af_(ac(x)) x|~ (~1)°H0)

where ag is a /oca//y constant function on of that is

oé—invariant a "y are locally constant functions on of that are

05 2-invariant, ac(x) = |X|,

» In particular, C°(F*) — SZc(F*) is of finite codimension;

pvs (



Paley-Wiener theorem for S (F*)

pvs

Theorem (JLZ)

> Under Mellin transform ([ f(x)xs(x)dx), Sis(F*) is
captured by

n—1

L(s,x) [ L2s +2i +1,x%).
i=0

It follows from the description of G.C.D. for the zeta integral
Z(s, -, x) attached to (GLn,, Sp), which is established in our work
(for x unramified it is proved by Piatetski-Shapiro and Rallis).



Abelian harmonic analysis

Proposition (JLZ)

» For any f € ST, ((F™), there is the following functional

pvs
equation after meromorphic continuation

/ L(F)x +nﬂ(t) Ldt = By Xs)/ t)x +2n+1(t)dt

where

2n—1
2

260) [T (2s —2n+2r,03,9).

5¢(XS) = ’7(5 -
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Theorem (JLZ)

» For k > 0, let 1, be the normalized characteristic function of
1+ wkog, then

kli_}moo L£(1x)(x)

is stably convergent, i.e. for fixed x € F*, there exists N such
that £(14)(x) = £(1n)(x) for any k > N;



Abelian harmonic analysis

Theorem (JLZ)

» For k > 0, let 1, be the normalized characteristic function of
1+ wkog, then

kli_}moo L£(1x)(x)

is stably convergent, i.e. for fixed x € F*, there exists N such
that £(1x)(x) = £(In)(x) for any k > N;
» Define

2n+1

pwss() = 75 lim 2(10)(x),

Then npys.s(x) is locally constant on F*.



Abelian harmonic analysis
Theorem (JLZ)

» The generalized Fourier transform
L=28 0 Shs(F*) = Spus(F*) is given by the following

Vi pvs
principal value integral

2n+1
. | 2

xfY), feSH

pvs

L(f) = (npvsv

(F7).



Abelian harmonic analysis
Theorem (JLZ)

» The generalized Fourier transform
L=28 0 Shs(F*) = Spus(F*) is given by the following
principal value integral

2n+1
. | 2

xfYV), fe S;,FVS(FX).

L(f) = (npvsv

» For any character xs = x| - |° of F*, the following principal
value integral is convergent whenever Re(s) is sufficiently
small, and admits meromorphic continuation to s € C,

npvs,w(Xs) ‘= Npvs,yp * Xs(e)
pv
= lim / npvs,w(X)Xs(X_l)dX
q

ko0 Jqkslx <q-

= /81/1(Xs)'
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Abelian harmonic analysis

» In conclusion, we develop a new type of harmonic analysis on
F* associated to (S (FX)aEnPVS,W@p(Xs))-

pvs
» It can be viewed as the abelian case of the
Braverman-Kazhdan proposal.

» This abelian harmonic analysis plays the key role in our work.



Harmonic analysis on M**wN — Xp

Fix f € C2°(Xp(F)). Define

Rx(f)(g) := /N(F) f(wng)dn.

Proposition (JLZ)
» The function in a € F*
Fe(a) := 3| @ IRy (£)(s(a)g)

lies in S1,(F™).

pvs



Harmonic analysis on M**wN — Xp

Fix f € C2°(Xp(F)). Define

Rx(f)(g) := /N(F) f(wng)dn.

Proposition (JLZ)
» The function in a € F*
Fe(a) := 3| @ IRy (£)(s(a)g)

lies in S1,(F™).

> Loy, (Fe)(a) = [al*" 1 Fxy(F) (571 (a)g) lies in Spg(FX).

Mpvs, v



Compatibility between Fx , and the unnormalized
intertwining operator M, (s, x)

Proposition (JLZ)
> Let Py, : C2(Xp(F)) =+ 1(s.x) = Indg™ (xs),

2n+1

Pulf)@) = [ xla)al™ f(s a)g)d.

Then P, -1 0 Fx(f)(g) is absolutely convergent for Re(s)
sufficiently small, and the following identity holds after
meromorphic continuation

PX;1 o .Fx,zp(f)(g) = Bw(Xs)(MW(Sa X) o sz)(f)(g)'



Basic properties of Fx  and Spys(Xp(F))

Define

Spus(Xp(F)) = C(Xp(F)) + Fx 4 (C(Xp(F)))-

Proposition (JLZ)

> Fx. stabilizes Spus(Xp(F)).
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Define

Spus(Xp(F)) = C(Xp(F)) + Fx 4 (C(Xp(F)))-

Proposition (JLZ)

> Fx. stabilizes Spus(Xp(F)).

> |2|n(2n+1) - Fx  extends to a unitary operator on L?(Xp(F))
and Fx 0 Fx -1 = [2[ 7207 H1d,



Basic properties of Fx  and Spys(Xp(F))

Define

Spus(Xp(F)) = C(Xp(F)) + Fx 4 (C(Xp(F)))-

Proposition (JLZ)

> Fx.y stabilizes Spes(Xp(F)).

> [2|"(n+1) . Fy ., extends to a unitary operator on L?(Xp(F))
and Fx 0 Fx -1 = [2[ 7207 H1d,

> Via Py, Spvs(Xp(F)) projects onto the space of good
sections 11(s, x) introduced by S. Yamana.



Asymptotic of Syus(Xp(F))

Proposition (JLZ)
A function f € C*°(Xp(F)) belongs to Spys(Xp(F)) if and only if f
is right Ksp, -finite, and as a function in a € F*,

‘a‘2n+1 f(s;l k)

belongs to S

pvs

(F*) for any fixed k € Kgp,, .

» Therefore functions in Spvs(Xp(F)) can be described by their
asymptotic behavior near the singular point.



Asymptotic of Syus(Xp(F))

Proposition (JLZ)
A function f € C*°(Xp(F)) belongs to Spys(Xp(F)) if and only if f
is right Ksp, -finite, and as a function in a € F*,

‘a‘2n+1 f(s;l k)

belongs to S

pvs

(F*) for any fixed k € Kgp,, .

» Therefore functions in Spvs(Xp(F)) can be described by their
asymptotic behavior near the singular point.

» The support of functions in Spys(Xp(F)) in Y;H(F) is
compact. In particular YT;H(F)\XP(F) = {0}.



Harmonic analysis on G, X Sp,y, — Xp

Sp4n

|

MaPwN Xp MP(Spy, % {Ton}) = Gm x Spy,

Proposition (JLZ)

» C: wN — Sp,, X {Iz,} is given by the Cayley transform.



Harmonic analysis on G, X Sp,y, — Xp

Sp4n

|

M2 wN Xp MP(Spy, % {Ton}) = Gm x Spy,

Proposition (JLZ)

» C: wN — Sp,, X {Iz,} is given by the Cayley transform.
» The Jacobian of C™1 is given by

je-1(h) = co| det(h — Ip,)|~(?"+1)

_ 1
Where o = m



Harmonic analysis on G, X Sp,y, — Xp

» For f € Spys(Xp(F)), define

dr(a,h) := F(s(a) 1 (h,Ton))|a| 2.

Set
Sp(G(F)) = {or| € Spus(Xp(F))}-



Harmonic analysis on G, X Sp,y, — Xp

» For f € Spys(Xp(F)), define

¢f(av h) = f(ﬁ(a)_l . (h’IZn))| |2n+1
Set

Sp(G(F)) = {or| € Spus(Xp(F))}-
» Define

®,.5(a, h) = - Npvss(a- det(h +In,)) - [det(h + Ipp)| =2 .

For f € C2°(Xp(F)), the p-Fourier transform is defined by

Fpb (¢f)(a, h) / / pw(ax gh)or(x, g)dxdg.
Spa,(F)



Compatibility between Fx ., and F,

Proposition (JLZ)
> For f € C2(Xp(F))

qzs]"x,w(f)(a’ h) = ’2|_n(2n+1)-7:p,w(¢f)(2_2n37 —hh).



Compatibility between Fx ., and F,

Proposition (JLZ)
» For f € C(Xp(F)),
Orcun(@ah) = 2] "CDE, y(¢6)(27 e, —h 7).

» In particular, we can extend the definition of F,, to
S,(G(F)) via

Gry o(r)(@ h) = 27" CTDE, (6f)(27%"a, —h7T).



Compatibility between F,, and the normalized
intertwining operators M! (s, x, %)

Proposition (JLZ)
For h € Sp,,(F) and f € Spus(Xp(F)),

PXS—I o f}—p,w((ﬁf)((_h_l’ Id2n))

is well-defined for Re(s) sufficiently small, and the following
identity holds after meromorphic continuation to s € C,

M, (s,x %) 0 P (F)((h, 1) = P, 10 (o0 ((=h7. 1))



Basic properties of S,(G(F)) and F,

Proposition (JLZ)
> F,. stabilizes S,(G(F)).
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» F,. Stabilizes S,(G(F)).
> F,. extends to a unitary operator on L?>(G(F), dg).



Basic properties of S,(G(F)) and F,

Proposition (JLZ)

» F,. Stabilizes S,(G(F)).
> F,. extends to a unitary operator on L?>(G(F), dg).
> fp7¢_1 o fpﬂp = Id.



Basic properties of S,(G(F)) and F,

Proposition (JLZ)
Fix x @ m € Irr(G(F)). Set

Z(s. f.p) = / o(a, h)o(a, )| al"~} dadh,
FX ><Sp2n(F)

with ¢ € S,(G(F)), ¢ € C(x @ ).
The integral is absolutely convergent for Re(s) large, and
represents a rational function in q—*°.

» It can be deduced from the asymptotic of functions in
Spvs(Xp(F))-



Basic properties of S,(G(F)) and F,

Proposition (JLZ)
» After restriction, the linear functional Z(s,-,-) lies in
Homg(ryx g(F)(C(G(F)) ® (Xs__l% ®71')® (X, ®7),C),

where the latter space is of dimension 1.



Basic properties of S,(G(F)) and F,

Proposition (JLZ)
» After restriction, the linear functional Z(s,-,-) lies in
Homg(ryx g(F)(C(G(F)) ® (Xs__l% ®71')® (X, ®7),C),

where the latter space is of dimension 1.

» By equivariant property there exists a rational function
(s, x ®7) in q~° such that

Z(l - Sa]:p,tb(f)vsov) = rp,w(saX ®7T) : Z(S’ f7 (;0)



Basic properties of S,(G(F)) and F,
Proposition (JLZ)
» Let py.or € C(xs @ 7). Then as distributions on G(F), the

following identity holds by meromorphic continuation,

1
‘FP7¢(90;</5®W) = rp,d)(§7 Xs & 7T) C Pxs@me

where for f € C2°(G(F)),

(‘FP,TZJ(@;s@ﬂ’)v f)G = (¢¥S®W’Fp,¢(f))6'

whenever the latter does not touch the poles.
In particular T , (s, x ® w) is a Gamma function in the sense
of Gelfand and Graev.



Basic properties of S,(G(F)) and F,
Proposition (JLZ)
» Let py.or € C(xs @ 7). Then as distributions on G(F), the

following identity holds by meromorphic continuation,

1
‘FP7¢(90;</5®W) = rp,d)(§7 Xs & 7T) C Pxs@me
where for f € C2°(G(F)),

(‘FP,TZJ(@;s@ﬂ’)v f)G = (¢¥S®W’Fp,¢(f))6'

whenever the latter does not touch the poles.
In particular T , (s, x ® w) is a Gamma function in the sense
of Gelfand and Graev.

1 1
er’¢'(§7XS ® 7T) : rp,zp_l(E?Xs ! ® ﬂ-v) =1



Basic properties of ¢,

> Set Gy = {(a,h) € G(F) = F* x Sp,,| |a] = q~¢}. Let chy
be the characteristic function of Gy.
> Set ¢p7w73 = (Dpﬂl} - chy.



Basic properties of ¢,
Theorem (JLZ)

» The distribution ®, . ¢ lies in the Bernstein center of G(F).
For x ® m € Irr(G(F)), set

(X @ T)(®pp0) = fo(x ® m)ldy@r-



Basic properties of ¢,
Theorem (JLZ)

» The distribution ®, . ¢ lies in the Bernstein center of G(F).
For x ® m € Irr(G(F)), set

(X @ T)(®pp0) = fo(x ® m)ldy@r-

» The summation

Z ff(Xs & 7T)
¢

is convergent whenever Re(s) is sufficiently large, and admits
a meromorphic continuation to s € C.



Basic properties of ¢,
Theorem (JLZ)
» The distribution ®, . ¢ lies in the Bernstein center of G(F).
For x ® m € Irr(G(F)), set
(X @ 7)(Ppp,) = fo(x @ m)ldyer.

» The summation

Z ff(Xs & 7T)
¢

is convergent whenever Re(s) is sufficiently large, and admits
a meromorphic continuation to s € C.

» The following identity holds after meromorphic continuation

1 _
> filxs@m) =Tou(5oxs" @)
y4



Verification

Corollary (JLZ)

» Based on the work of Yamana, for any x @ w € Irr(G(F)), the
following set

Lyor ={2(s,0,0)| ¢ € Sp(G(F)),p €C(x @)}

is a finitely generated fractional ideal of C[q—*, ¢°] with
generator L(s,x ® m, p).



Verification

Corollary (JLZ)

» Based on the work of Yamana, for any x @ w € Irr(G(F)), the
following set

Lyor ={2(s,0,0)| ¢ € Sp(G(F)),p €C(x @)}

is a finitely generated fractional ideal of C[q—*, ¢°] with
generator L(s,x ® m, p).

» Based on the work of Lapid-Rallis, lkeda and Kakuhama,
rPﬂ/’(s7 X & 7'(') = fY(S? X ® ™, P, "¢)



Thank you!



