Twisted endoscopic character relation for Kaletha's regular supercuspidal L-packets

Masao Oi

Kyoto University

December 2, 2020 (MIT Lie Groups Seminar)

What I am going to talk about

Main result (in progress)

Kaletha's local Langlands correspondence for toral regular supercuspidal representations satisfies the twisted endoscopic character relation.

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- Review: Kaletha's construction of LLC
- Precise statement of main result
- Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

Local Langlands correspondence

- Let F be a p-adic field.
- Let **G** be a connected reductive group over F ($G := \mathbf{G}(F)$).
- $\Pi(\mathbf{G}) := \{\text{irreducible admissible representations of } G\}/\sim$,
- $lackbox{lack}\Phi(\mathbf{G}):=\{L ext{-parameters of }\mathbf{G}\}/{\sim}.$

Local Langlands correspondence (LLC)

There exists a natural map with finite fibers:

$$LLC_{\mathbf{G}} : \Pi(\mathbf{G}) \to \Phi(\mathbf{G}).$$

In other words, there exists a natural partition of the set $\Pi(\mathbf{G})$ into subsets (which are finite, called L-packets) parametrized by L-parameters:

$$\Pi(\mathbf{G}) = \bigsqcup_{\phi \in \Phi(\mathbf{G})} \Pi_{\phi}^{\mathbf{G}} \quad (\Pi_{\phi}^{\mathbf{G}} := LLC_{\mathbf{G}}^{-1}(\phi)).$$

■ LLC is still conjectural in general, but a number of results have been obtained.

Motivation: comparison of different constructions

- Approach 1: Specialize the group. For example,
 - GL_N ; Harris-Taylor
 - quasi-split classical groups (Sp_{2n} , SO_N , U_N); Arthur, Mok
- Approach 2: Specialize the class of representations. For example,
 - regular supercuspidal representations; Kaletha (works for tamely ramified groups)
 (he dropped the regularity recently; arXiv:1912.03274)
 - Q. Do the two approaches give the same LLC (on their "intersection")?

Theorem (O.-Tokimoto, 2019)

We assume that $p \neq 2$. Kaletha's and Harris–Taylor's LLC coincide for regular supercuspidal representations of GL_N .

Q. Kaletha's LLC = Arthur's (Mok's) LLC?

→ To answer this problem, we must show that Kaletha's LLC satisfies the endoscopic character relation, which is the characterization of Arthur's LLC.

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- Review: Kaletha's construction of LLC
- Precise statement of main result
- Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

What is (twisted) endoscopy?

- Take a "twist" $\theta \curvearrowright \mathbf{G} (\leadsto \hat{\theta} \curvearrowright \hat{\mathbf{G}})$.
- Roughly speaking, a (twisted) endoscopic group for (G, θ) is a quasi-split connected reductive group H over F equipped with
 - $\hat{\xi}$: ${}^{L}\mathbf{H} \hookrightarrow {}^{L}\mathbf{G}$,
 - $s \in \hat{\mathbf{G}}$ such that $\hat{\xi}(\hat{\mathbf{H}}) = \operatorname{Cent}_{\hat{\mathbf{G}}}(s\hat{\theta})^{\circ} = (\text{fixed points of } \operatorname{Int}(s) \circ \hat{\theta} \text{ in } \hat{\mathbf{G}})^{\circ}.$
- Take (\mathbf{G}, θ) to be GL_N and

$$\theta(g) := J_N^t g^{-1} J_N^{-1}, \quad J_N := \begin{pmatrix} & & & & 1 \\ & & & & -1 & \\ & & & \ddots & & \\ & & & & \ddots & & \end{pmatrix}.$$

■ Then a quasi-split Sp or SO is an endoscopic group for (G, θ) :

H	SO_{2n+1}	Sp_{2n}	SO_{2n}
$\hat{\mathbf{H}}$	$\mathrm{Sp}_{2n}(\mathbb{C})$	$SO_{2n+1}(\mathbb{C})$	$\mathrm{SO}_{2n}(\mathbb{C})$
G	GL_{2n}	GL_{2n+1}	GL_{2n}
$\hat{\mathbf{G}}$	$\mathrm{GL}_{2n}(\mathbb{C})$	$\mathrm{GL}_{2n+1}(\mathbb{C})$	$\mathrm{GL}_{2n}(\mathbb{C})$
s	1	1	$\operatorname{diag}(1,-1,1,\ldots)$

What is endoscopic character relation?

The existences of LLC_H and LLC_G induces a lifting of L-packets.

Endoscopic character relation

= an identity between (twisted) characters of representations in $\Pi^{\bf G}_\phi$ and $\Pi^{\bf H}_\phi$

 \leadsto This characterizes the endoscopic lifting $\Pi_\phi^\mathbf{H} \mapsto \Pi_\phi^\mathbf{G}$ ("Characters tell all").

Characterization of Arthur's LLC ($\mathbf{H}=\mathsf{classical},\,\mathbf{G}=\mathrm{GL}_N$)

 $LLC_{\mathbf{H}}$ is the unique map such that $\Pi_{\phi}^{\mathbf{H}}$ and $\Pi_{\phi}^{\mathbf{G}}$ satisfy ECR.

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- 3 Review: Kaletha's construction of LLC
- Precise statement of main result
- 5 Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

Kaletha's reparametrization of Yu supercuspidals

- In the following, assume: **G** is tamely ramified and $p \gg 0$.
- In 2001, Yu constructed a certain wide class of supercuspidal representations.
- Kaletha reparametrized regular Yu-data by "tame elliptic regular pairs"; (\mathbf{S}, ϑ) consists of
 - a tamely ramified elliptic maximal torus S of G defined over F and
 - a "regular" character $\vartheta \colon \mathbf{S}(F) \to \mathbb{C}^{\times}$.

Construction of regular supercuspidal L-parameters

We take a regular supercuspidal L-packet datum $(\mathbf{S},\hat{j},\chi,\vartheta)$, which consists of

- \blacksquare a tamely ramified torus $\mathbf S$ defined over F,
- lacksquare an embedding $\hat{j}\colon\hat{\mathbf{S}}\hookrightarrow\hat{\mathbf{G}}$ whose $\hat{\mathbf{G}}$ -conjugacy class is Γ_F -stable,
- lacksquare a set χ of χ -data for (\mathbf{S},\mathbf{G}) , and
- lacksquare a "regular" character $\vartheta\colon \mathbf{S}(F) o \mathbb{C}^{ imes}$

satisfying several conditions.

Each $(\mathbf{S}, \hat{j}, \chi, \vartheta)$ produces an L-parameter ϕ and an L-packet $\Pi_{\phi}^{\mathbf{G}}$.

- LLC for S gives an L-parameter ϕ_{ϑ} of S.
- By applying the Langlands–Shelstad construction to (\hat{j}, χ) , we can extend $\hat{j} \colon \hat{\mathbf{S}} \hookrightarrow \hat{\mathbf{G}}$ to an L-embedding $^L j_\chi \colon ^L \mathbf{S} \hookrightarrow ^L \mathbf{G}$.
- Then we get an L-parameter ϕ of G (regular supercuspidal L-parameter):

$$\phi \colon W_F \xrightarrow{\phi_{\vartheta}} {}^L \mathbf{S} \xrightarrow{{}^L j_{\chi}} {}^L \mathbf{G}.$$

Construction of regular supercuspidal L-packets

- Put $\mathcal{J}^{\mathbf{G}}$ to be the **G**-conjugacy class of embeddings $\mathbf{S} \hookrightarrow \mathbf{G}$ determined by \hat{j} through the duality between \mathbf{G} and $\hat{\mathbf{G}}$.
- Put

$$\mathcal{J}_G^{\mathbf{G}} := \{j \in \mathcal{J}^{\mathbf{G}} \mid \text{defined over } F\}/G\text{-conj.}$$

 \blacksquare For $j\in\mathcal{J}_G^{\mathbf{G}}$, define a tame elliptic regular pair $(\mathbf{S}_j,\vartheta_j)$ by $\mathbf{S}_j:=j(\mathbf{S})$ and

$$\vartheta_j := (\vartheta \circ j^{-1}) \cdot (\epsilon \cdot \zeta)$$

Here $\epsilon \cdot \zeta \colon j(S) \to \mathbb{C}^{\times}$ is a character determined by root-theoretic information of $(\mathbf{S}_{j}, \mathbf{G})$ and χ .

 \blacksquare We define an L-packet of G by

$$\Pi_{\phi}^{\mathbf{G}} := \{ \pi_j \mid j \in \mathcal{J}_G^{\mathbf{G}} \}, \quad \pi_j := \pi_{(\mathbf{S}_j, \vartheta_j)}.$$

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- Review: Kaletha's construction of LLC
- Precise statement of main result
- Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

Setting of the problem

- Let G be a quasi-split connected reductive group with θ .
- We follow the formalism of twisted space (G, \tilde{G}) ; $\tilde{G} := G \rtimes \theta$. (\leadsto representation theory on $\tilde{G} = \theta$ -twisted representation theory on G)
- Let \mathbf{H} be an endoscopic group for (\mathbf{G}, θ) .
- Suppose: **G** and **H** are tamely ramified and $p \gg 0$.
- Take a toral regular supercuspidal L-packet datum $(\mathbf{S}, \hat{j}, \chi, \vartheta)$ of \mathbf{G} . $\rightarrow \phi$: associated toral regular supercuspidal L-parameter of \mathbf{G}
- Assume: ϕ factors through the L-group ${}^{L}\mathbf{H}$ of \mathbf{H} . $\rightarrow \phi$ is regarded as an L-parameter of \mathbf{H} (again toral).

Proposition (θ -stable structure of $\Pi^{\mathbf{G}}_{\phi}$)

- (1) $\Pi_{\phi}^{\mathbf{G}}$ is θ -stable, i.e., $\Pi_{\phi}^{\mathbf{G}} \circ \theta = \Pi_{\phi}^{\mathbf{G}}$ as sets.
- (2) There is a canonical F-rational automorphism $\theta_{\mathbf{S}}$ of \mathbf{S} such that, for any $j \in \mathcal{J}_G^{\mathbf{G}}$, we have $\pi_j \circ \theta \cong \pi_{j'}$, where $j' = \theta \circ j \circ \theta_{\mathbf{S}}^{-1}$.
 - $\qquad \qquad \tilde{\mathcal{J}}_G^{\mathbf{G}} := \{ j \in \mathcal{J}_G^{\mathbf{G}} \mid j = \theta \circ j \circ \theta_{\mathbf{S}}^{-1} \} \text{ (\leadsto parametrizes θ-stable members in $\Pi_\phi^{\mathbf{G}}$)}$

Precise statement of main result

Main result at present (ECR for $\Pi_{\phi}^{\mathbf{G}}$ and $\Pi_{\phi}^{\mathbf{H}}$)

For an elliptic strongly regular s-s. element $\delta \in \tilde{G}$ having a norm in H, we have

$$\sum_{\pi \in \Pi_{\phi}^{\mathbf{G}}} \Delta_{\mathbf{H}, \mathbf{G}}^{\text{spec}}(\pi) \tilde{\Theta}_{\pi}(\delta) = \sum_{\gamma \in H/\text{st}} \frac{D_{\mathbf{H}}(\gamma)^{2}}{D_{\tilde{\mathbf{G}}}(\delta)^{2}} \Delta_{\mathbf{H}, \mathbf{G}}(\gamma, \delta) \sum_{\pi_{\mathbf{H}} \in \Pi_{\phi}^{\mathbf{H}}} \Theta_{\pi_{\mathbf{H}}}(\gamma),$$

where $\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \in \mathbb{C}$ is a constant depending only on ϕ and π .

- $lackbox{f \Theta}_{\pi_{f H}}$ is the (Harish-Chandra) character of $\pi_{f H}\in\Pi_\phi^{f H}$.
- $\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \in \mathbb{C}$ is an explicit constant (spectral transfer factor). $(\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \neq 0$ if and only if π is θ -stable)
- $ilde{\Theta}_{\pi}$ is the twisted character of π .
- lacksquare γ runs over stable conjugacy classes of norms of δ in H.
- lacksquare $D_{\mathbf{H}}$ and $D_{ ilde{\mathbf{G}}}$ denote the Weyl discriminants.
- ullet $\Delta_{\mathbf{H},\mathbf{G}}(\gamma,\delta)$ is the transfer factor of Langlands–Shelstad–Kottwitz.

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- 3 Review: Kaletha's construction of LLC
- Precise statement of main result
- 5 Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

Toral regular supercuspidal representations

Kaletha proved ECR for toral regular supercuspidal representations in the case of standard endoscopy:

standard endoscopy = twisted endoscopy with trivial θ

toral regular supercuspidal = arising from toral Yu-datum

- \blacksquare Roughly, a Yu-datum $(\vec{\mathbf{G}},\pi_{-1},\vec{\phi})$ consists of
 - a sequence $\vec{\mathbf{G}} = (\mathbf{G}^0 \subsetneq \mathbf{G}^1 \subsetneq \cdots \subsetneq \mathbf{G}^d = \mathbf{G})$ of tame Levis,
 - a depth zero supercuspidal representation π_{-1} of $\mathbf{G}^0(F)$, and
 - a sequence $\vec{\phi} = (\phi_0, \dots, \phi_d)$ of characters ϕ_i of $\mathbf{G}^i(F)$ satisfying several technical conditions.
- A toral Yu-datum = Yu datum of the form

$$((\mathbf{S} \subsetneq \mathbf{G}), \mathbb{1}, (\vartheta, \mathbb{1}))$$

 \rightsquigarrow the tame elliptic regular pair corresponding to such a datum is given by (\mathbf{S}, ϑ) , where $\vartheta = \phi_0$.

Standard endoscopic character relation

- Let \mathbf{H} be an endoscopic group for $(\mathbf{G}, \mathrm{id})$.
- Take a toral L-packet datum $(\mathbf{S}, \hat{j}, \vartheta, \chi)$ of \mathbf{G} .
- Suppose: its L-parameter ϕ factors through ${}^L\mathbf{H} \hookrightarrow {}^L\mathbf{G}$.
 - ullet ϕ is regarded as a toral L-parameter of ${\bf H}$.
 - get a toral L-packet datum $(\mathbf{S}_{\mathbf{H}}, \hat{j}_{\mathbf{H}}, \vartheta_{\mathbf{H}}, \chi_{\mathbf{H}})$ of \mathbf{H} .
- \blacksquare Recall that the members of $\Pi_\phi^{\mathbf{G}}$ and $\Pi_\phi^{\mathbf{H}}$ are parametrized by

$$\begin{split} \mathcal{J}_G^\mathbf{G} &:= \{j \in \mathcal{J}^\mathbf{G} \mid j \colon \mathbf{S} \hookrightarrow \mathbf{G} \colon \text{ defined over } F\} / \sim_G, \\ \mathcal{J}_H^\mathbf{H} &:= \{j_\mathbf{H} \in \mathcal{J}^\mathbf{H} \mid j_\mathbf{H} \colon \mathbf{S}_\mathbf{H} \hookrightarrow \mathbf{H} \colon \text{ defined over } F\} / \sim_H. \end{split}$$

Standard endoscopic character relation

$$\begin{split} & \sum_{j \in \mathcal{J}_{G}^{\mathbf{G}}} \Delta_{\mathbf{H}, \mathbf{G}}^{\mathrm{spec}}(\pi_{j}) \Theta_{\pi_{j}}(\delta) \\ = & \sum_{\gamma \in H/\mathrm{st}} \frac{D_{\mathbf{H}}(\gamma)^{2}}{D_{\mathbf{G}}(\delta)^{2}} \Delta_{\mathbf{H}, \mathbf{G}}(\gamma, \delta) \sum_{j_{\mathbf{H}} \in \mathcal{J}_{H}^{\mathbf{H}}} \Theta_{\pi_{j_{\mathbf{H}}}}(\gamma), \end{split}$$

Starting point: Adler-DeBacker-Spice character formula

- Let (S, ϑ) be a toral tame elliptic regular pair of depth $r \in \mathbb{R}_{>0}$.
- lacksquare Let $\delta \in G$ be an elliptic strongly regular semisimple element.
- Take a normal r-approximation $\delta = \delta_{< r} \cdot \delta_{> r}$; roughly speaking,
 - $\delta_{< r}$: "p-adically shallower than r"-part of δ (head),
 - $\delta_{\geq r}$: "p-adically deeper than r"-part of δ (tail).

("normal": $\delta_{\geq r}$ belongs to $\mathbf{G}_{\delta_{< r}} := \mathrm{Cent}_{\mathbf{G}}(\delta_{< r})^{\circ}$)

Prop (1st form of ADS formula)

$$\Theta_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \backslash G/G_{\delta_{< r}} \\ g\delta_{< r}g^{-1} \in S}} \Theta_{\sigma}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^{*}g}^{\mathbf{G}_{\delta_{< r}}} (\log(\delta_{\geq r})).$$

- $\pi_{(\mathbf{S},\vartheta)} = \operatorname{c-Ind}_{K_{\sigma}}^{\mathbf{G}(F)} \sigma$ for certain open compact (mod-center) subgroup K_{σ} .
- $X^* \in (\operatorname{Lie} \mathbf{S})^*$ is an element representing $\vartheta|_{S_n}$.
- $\hat{\mu}_{g^{-1}X^*g}^{\mathbf{G}_{\delta < r}} \text{ is the Fourier transform of the orbital integral on } \mathrm{Lie}\,\mathbf{G}_{\delta < r}.$ (with respect to the $\mathbf{G}_{\delta < r}(F)$ -orbit of $g^{-1}X^*g$)

Langlands–Shelstad descent & reduction to Lie algebras

■ For each $j \in \mathcal{J}_G^\mathbf{G}$ and $j_{\mathbf{H}} \in \mathcal{J}_H^\mathbf{H}$, we have

$$\begin{aligned} & \mathbf{G}\text{-side: } \Theta_{\pi_j}(\delta) = \sum \Theta_{\sigma_j}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X_j^*g}^{\mathbf{G}_{\delta < r}}(\log(\delta_{\geq r})) \\ & \mathbf{H}\text{-side: } \Theta_{\pi_{j_{\mathbf{H}}}}(\gamma) = \sum \Theta_{\sigma_{\mathbf{H},j_{\mathbf{H}}}}(h\gamma_{< r}h^{-1}) \cdot \hat{\mu}_{h^{-1}X_{\mathbf{H},j_{\mathbf{H}}}^*h}^{\mathbf{H}_{\gamma < r}}(\log(\gamma_{\geq r})) \end{aligned}$$

The Langlands–Shelstad descent gives an endoscopic structure on $(\mathbf{H}_{\gamma_{< r}}, \mathbf{G}_{\delta_{< r}})$.

F.T. of orbital integrals = Lie algebra version of characters of representations

Waldspurger–Ngô transfer = Lie algebra version of SECR

Waldspurger–Ngô transfer on Lie algebras

Waldspurger–Ngô transfer on Lie algebras

$$\gamma(\mathfrak{g}') \sum_{X'^* \sim_{\operatorname{st}} X^*} \Delta_{\mathbf{H}', \mathbf{G}'}(Y^*, X'^*) \hat{\mu}_{X'^*}^{\mathbf{G}'}(X)$$

$$= \gamma(\mathfrak{h}') \sum_{Y/\operatorname{st}} \Delta_{\mathbf{H}', \mathbf{G}'}(Y, X) \sum_{Y'^* \sim_{\operatorname{st}} Y^*} \hat{\mu}_{Y'^*}^{\mathbf{H}'}(Y)$$

■ index sets: G' (resp. H')-conj. classes in a G' (resp. H')-conj. class.

Recall: G-side of SECR

$$\sum_{j \in \mathcal{J}_{G}^{\mathbf{G}}} \Delta_{\mathbf{H}, \mathbf{G}}^{\mathrm{spec}}(\pi_{j}) \Theta_{\pi_{j}}(\delta) = \sum_{j \in \mathcal{J}_{G}^{\mathbf{G}}} \Delta_{\mathbf{H}, \mathbf{G}}^{\mathrm{spec}}(\pi_{j}) \sum_{\substack{g \in S_{j} \backslash G/G' \\ g \delta_{< r}g^{-1} \in S_{j}}} \Theta_{\sigma_{j}}({}^{g} \delta_{< r}) \cdot \hat{\mu}_{X_{j}^{*}, g}^{\mathbf{G}'}(\log(\delta_{\geq r}))$$

→ We need to consider a descent and transfer of index sets!

Transfer of index sets; Kaletha's descent lemma

■ The index set of ADS formula is understood as

$$\mathcal{J}_{G'}^G(j) := \{ k \in j \mid k \colon \mathbf{S} \hookrightarrow \mathbf{G}' \subset \mathbf{G} \colon \text{ defined over } F \} / \sim_{G'}.$$

$$\{g \in S_j \setminus G/G' \mid g\delta_{< r}g^{-1} \in S_j\} \stackrel{1:1}{\longleftrightarrow} \mathcal{J}_{G'}^G(j) \colon g \mapsto \operatorname{Int}(g^{-1}) \circ j$$

■ Combine $\mathcal{J}_G^{\mathbf{G}}$ with $\mathcal{J}_{G'}^G$ and divide it again via stable \mathbf{G}' -conjugacy.

- Kaletha's descent lemma relates $\mathcal{J}_{\mathbf{G}'}^{\mathbf{G}}$ to $\mathcal{J}_{\mathbf{H}'}^{\mathbf{H}}$.
- The Waldspurger–Ngô transfer relates $\mathcal{J}_{G'}^{\mathbf{G}'}$ to $\mathcal{J}_{H'}^{\mathbf{H}'}$.

Computation of the contributions of r-heads

1st form of ADS formula

$$\Theta_{\pi_j}(\delta) = \sum_{\substack{g \in S_j \setminus G/G' \\ g\delta_{< r}g^{-1} \in S_j}} \Theta_{\sigma}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X_j^*g}^{G'} (\log(\delta_{\geq r})).$$

- Adler–Spice ('09) computed Θ_{σ} at r-heads explicitly.
- DeBacker-Spice ('18) sophisticated it based on a root-theoretic language.
- Kaletha ('19) rewrote it via endoscopic invariants such as transfer factors.

ADS formula rewritten by Kaletha

$$\Theta_{\pi_{j}}(\delta) = \frac{e(\mathbf{G})}{e(\mathbf{G}')} \cdot \frac{\varepsilon(\mathbf{T}_{\mathbf{G}} - \mathbf{T}_{\mathbf{G}'^{*}})}{D_{\mathbf{G}}(\delta)}$$
$$\cdot \sum_{\substack{g \in S_{j} \setminus G/G' \\ g\delta_{< r}g^{-1} \in S_{j}}} \Delta_{\mathrm{II}}^{\mathbf{G},\mathrm{abs}}(g\delta_{< r}g^{-1}) \cdot \vartheta \circ j^{-1}(g\delta_{< r}g^{-1}) \cdot \hat{\iota}_{g^{-1}X_{j}^{*}g}^{\mathbf{G}'}(\log(\delta_{\geq r})).$$

 \rightsquigarrow Finally, by putting $\Delta_{\mathbf{H},\mathbf{G}}^{\operatorname{spec}}(\pi_j) := \langle \operatorname{inv}(j_{\mathfrak{w}},j),s \rangle$, we get SECR.

- Local Langlands correspondence
- 2 Endoscopy and endoscopic character relation
- 3 Review: Kaletha's construction of LLC
- Precise statement of main result
- 5 Review: Kaletha's proof of SECR
- 6 Outline of "twisting" process

Twisted version of the Adler-DeBacker-Spice formula

- \blacksquare Let $\delta \in \tilde{G}$ be an elliptic strongly regular semisimple element.
 - \leadsto get a "twisted maximal torus" $(\mathbf{T}^\diamondsuit, \tilde{\mathbf{T}}^\diamondsuit) \subset (\mathbf{G}, \tilde{\mathbf{G}})$ defined over F.
 - $ilde{\mathbf{T}}^{\diamondsuit}$ acts on $\mathbf{T}^{\diamondsuit}$ as θ_{\diamondsuit} .
 - $\tilde{\mathbf{T}}^{\diamondsuit} = \mathbf{T}^{\diamondsuit} \delta.$
- Suppose: δ has a norm $\gamma \in H$.
 - \rightsquigarrow get a maximal torus $\mathbf{T}^{\flat} \subset \mathbf{H}$ containing γ .
- Since γ is a norm of δ , in fact we have $\mathbf{T}_{\theta_{\diamond}}^{\hat{\Diamond}} \cong \mathbf{T}^{\flat}$.
- $\blacksquare \text{ The isogeny } \mathbf{T}^{\diamondsuit,\theta\diamondsuit} \hookrightarrow \mathbf{T}^\diamondsuit \twoheadrightarrow \mathbf{T}_{\theta\diamondsuit} \cong \mathbf{T}^\flat \text{ induces } T_{0+}^{\diamondsuit,\theta\diamondsuit} \cong T_{0+}^\flat.$
 - Put $\delta_{\geq r} \in T_{0+}^{\diamondsuit,\theta_{\diamondsuit}}$ to be the image of $\gamma_{\geq r}$ via this isomoprhism.
 - $Put \ \delta_{< r} := \delta \cdot \delta_{\geq r}^{-1}.$

$$\leadsto$$
 We get $\delta = \delta_{< r} \cdot \delta_{\geq r}$. (Note: $\delta_{< r} \in \tilde{G}$ and $\delta_{\geq r} \in G_{\delta_{< r}}$)

1st form of twisted ADS formula

$$\tilde{\Theta}_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \backslash G/G_{\delta_{< r}} \\ {}^g \delta_{< r} \in \tilde{S}}} \tilde{\Theta}_{\sigma}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^*g}^{\mathbf{G}_{\delta_{< r}}} (\exp^{-1}(\delta_{\geq r})).$$

L'endoscopie tordue n'est pas si tordue

- Waldspurger constructed another connected reductive group $\bar{\mathbf{H}}$ relating $\mathbf{G}_{\delta_{< r}}$ to $\mathbf{H}_{\gamma_{< r}}$ via standard and non-standard endoscopy.
- Then he proved that
 - lacksquare Fourier transforms of orbital integrals are transferred between $\mathbf{H}'_{\mathrm{SC}}$ and $\mathbf{ar{H}}_{\mathrm{SC}}$,
 - \blacksquare transfer factor for (H,\tilde{G}) is descended to $(\bar{H},G'_{\rm SC}).$

Twisted version of Kaletha's descent lemma

■ In the standard case, a map $\mathcal{J}_{\mathbf{H}'}^{\mathbf{H}} \to \mathcal{J}_{\mathbf{G}'}^{\mathbf{G}}$ of Kaletha's descent lemma was constructed via admissible isomorphisms:

Unfortunately, we cannot simply immitate this construction in the twisted case.

→ We need to "rigidify" admissible isomorphisms in some way.

Waldspurger's "diagram"

• We utilize Waldspurger's notion of a diagram: $(\mathbf{T}^{\flat}, \mathbf{T}_0, \mathbf{T}^{\diamondsuit}, \mathbf{T}^{\natural}, h, g_0, g_1)$.

- A diagram encodes information about how an admissible isomorphism is given by conjugation (i.e., h, g_0 , g_1).
- We can formulate a twisted version of Kaletha's descent lemma (which relates $\mathcal{J}_{\mathbf{H}'}^{\mathbf{H}}$ to $\tilde{\mathcal{J}}_{\mathbf{G}'}^{\mathbf{G}}$) via diagrams.

→ get a comparison of index sets

Computation of the contributions of r-heads

1st form of twisted ADS formula

$$\tilde{\Theta}_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \backslash G/G_{\delta_{< r}} \\ {}^g \delta_{< r} \in \tilde{S}}} \tilde{\Theta}_{\sigma}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^*g}^{\mathbf{G}_{\delta_{< r}}} (\exp^{-1}(\delta_{\geq r})).$$

- The contribution of the head is eventually reduced to a computation of twisted characters of Weil representations of finite Heisenberg groups.
- We upgrade it to "twisted ADSK" by a case-by-case computation depending on the types of "restricted roots".

Proposition (twisted version of ADSK formula)

$$\tilde{\Theta}_{\pi_{j}}(\delta) = \frac{e(\mathbf{G}_{\theta})}{e(\mathbf{G}')} \cdot \frac{\varepsilon(\mathbf{T}_{\mathbf{G}_{\theta}} - \mathbf{T}_{\mathbf{G}'^{*}})}{D_{\tilde{\mathbf{G}}}(\delta)}$$

$$\cdot \sum_{\substack{g \in S_{j} \setminus G/G' \\ g\delta_{< r}g^{-1} \in \tilde{S}_{j}}} \Delta_{\mathrm{II}}^{\tilde{\mathbf{G}},\mathrm{abs}}(g\delta_{< r}g^{-1}) \cdot \tilde{\vartheta} \circ \tilde{\jmath}^{-1}(g\delta_{< r}g^{-1}) \cdot \hat{\iota}_{g^{-1}X_{j}^{*}g}^{\mathbf{G}'}(\log(\delta_{\geq r})).$$

Spectral transfer factors

$$\sum_{\pi \in \Pi_{\phi}^{\mathbf{G}}} \Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \tilde{\Theta}_{\pi}(\delta) = \sum_{\gamma \in H/\mathrm{st}} \frac{D_{\mathbf{H}}(\gamma)^2}{D_{\tilde{\mathbf{G}}}(\delta)^2} \Delta_{\mathbf{H},\mathbf{G}}(\gamma,\delta) \sum_{\pi_{\mathbf{H}} \in \Pi_{\phi}^{\mathbf{H}}} \Theta_{\pi_{\mathbf{H}}}(\gamma),$$

■ We put

$$\Delta_{\mathbf{H},\mathbf{G}}^{\text{spec}}(\pi_j) := \Delta_{\text{I,III}} \left(\gamma_{< r} \cdot \exp(X_{\mathbf{H},j_{\mathbf{H}}}^*), \delta_{< r} \cdot \exp(X_j^*) \right) \cdot \frac{\vartheta_{\mathbf{H}} \circ j_{\mathbf{H}}^{-1}(\gamma_{< r})}{\tilde{\vartheta} \circ \tilde{j}^{-1}(\delta_{< r})}.$$

 \rightsquigarrow In fact, $\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi)$ depends only on π .

• standard case: $\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) = \langle \mathrm{inv}(j_{\mathfrak{w}},j),s \rangle$ by Kaletha

Remark. I borrowed this idea from the argument of Mezo in his proof of the twisted ECR for L-packets of real reductive groups (constructed by Langlands).