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Let F be a non-archimedean local field.
My goal is to review the status of what is known and conjectured
about the question of irreducibility of parabolic induction

π1 × π2 = Ind
GLn(F )
Pn1,n2

π1 ⊗ π2

(normalized) parabolic induction from the standard parabolic
subgroup of type (n1, n2).
There will be more questions than answers.
Please don’t hesitate to interrupt me for any questions and
comments, or simply to set the record straight!



Why GLn ?

Many aspects of representation theory of p-adic groups (e.g.,
L-packets, endoscopy) are simpler for GLn. It is a benchmark
(and a prerequisite) for understanding other groups (especially
classical groups).

Representation theory of GLn was undertaken by
Bernstein–Zelevinsky in the 1970s. They highlighted working
with all n’s together, i.e., considering

⊕n≥0R(GLn(F )).

It is a monoidal category, with parabolic induction as the
tensor functor and transitivity of induction as the associativity
constraints with the identity being the one-dimensional
representation of GL0 = 1. It is a ring category (the tensor
functor is bilinear and biexact).

Connections between representation theory of GLn(F ) and
quantum groups.



Consider a quiver Q of type An with the standard orientation

• → • → · · · → •

A representation of Q is a collection of finite-dimensional C-vector
spaces V1, . . . ,Vn together with linear transformations
Ti : Vi → Vi+1, i = 1, . . . , n − 1; in other words a
finite-dimensional graded vector space V = ⊕n

i=1Vi and a degree 1
(nilpotent) linear transformation T : V → V .
This forms an abelian category. Its indecomposable objects are
Jordan blocks (segments) [i , j ], indexed by 1 ≤ i ≤ j ≤ n:
dimVk = 1 if k ∈ [i , j ] and Vk = 0 otherwise; Tk 6= 0 iff i ≤ k < j .
The irreducible objects are [i , i ], i = 1, . . . , n.
Thus, the objects up to isomorphisms are indexed by
multisegments, which are simply formal finite sums of segments.
This is of course a special case of Gabriel’s theorem (1972) which
classifies the indecomposable objects of a Dynkin diagram of a
root system with an orientation by the positive roots – followed up
by Bernstein–Gelfand–Ponomarev 1973.



Fix V = ⊕n
i=1Vi of graded dimension d = (d1, . . . , dn) and set

Vi = di = 0 if i /∈ {1, . . . , n}. Consider the vector space

E→(V ) = {T : V → V |T (Vi ) ⊂ Vi+1 for all i}.

(This is the module variety (of dimension d ) of the path algebra of
Q.) Then GLd =

∏n
i=1 GLdi acts linearly on E→(V ) with finitely

many orbits, indexed by multisegments of type d .
Note that dimE→(V ) =

∑
i didi+1.

We could also consider the opposite quiver (reversing the arrows)
and

E←(V ) = {T : V → V |T (Vi ) ⊂ Vi−1 for all i}.

This is the dual space of E→(V ). Once again, GLd -orbits in
E←(V ) are indexed by multisegments of type d .



Preprojective algebra and nilpotent varieties (Pyasetskĭı
1975, Gelfand–Ponomarev 1979,. . . ,Lusztig 1990-1)

Consider all orientations simultaneously, i.e., the “bipartisan”
quiver Q̄

• ↔ • ↔ · · · ↔ •

Fix V of graded dimension d .

Λd = {(A,B) ∈ E→(V )× E←(V ) : AB = BA}.
This is the module variety of the d -dimensional modules of the
finite-dimensional quotient of the path algebra of Q̄ by the

relations −→e i
←−e i+1 −←−e i

−→e i−1, i = 1, . . . , n.

Λd is of pure dimension dimE→(V ) and in fact a Lagrangian
subvariety of T ∗(E→(V )) = E→(V )× E←(V ).
The irr. comp. of Λd are the closure of the conormal bundle of
GLd -orbits in E→(V ) (which are indexed by multisegments of type
d ).



General results

Let Ci be irr. comp. of Λd i
, i = 1, 2 and let d = d 1 + d 2.

Denote by C1 ⊕ C2 the GLd -orbit of {x1 ⊕ x2 : xi ∈ Ci}.
This is an irreducible set.
We say that an irr. comp. C is generically indecomposable if the
set {x ∈ C : x is indecomposable} has nonempty interior.

Theorem (Crawley-Boevey–Schröer (2002))

1 (analogue of Krull-Remak-Schmidt) Any irr. comp. C of Λd

can be written uniquely (up to permutation) as C1 ⊕ · · · ⊕ Ck

where Ci are generically indecomposable.

2 Let C1,C2 be irr. comp.. Then C1 ⊕ C2 is an irr. comp. if
and only if there exist xi ∈ Ci , i = 1, 2 such that
Ext1(x1, x2) = Ext1(x2, x1) = 0. (This is a open condition in
(x1, x2) ∈ Λd 1

× Λd 2
.)



Remarks

The results above hold for the module variety of the
d-dimensional modules of an arbitrary finite-dimensional ring.
(Or more generally, the d -dimensional modules of a
finite-dimensional ring with orthogonal idempotents e1, . . . , en
such that e1 + · · ·+ en = 1.)

By Voigt’s lemma (1974), for any x ∈ Λd with GLd -orbit O(x)

Ext1(x , x) ' Nx(O(x)) = TxΛd/TxO(x)

where TxΛd is the tangent space of the scheme Λd at x .

In the preprojective case, Ext1(x , x ′) and Ext1(x ′, x) are in
duality (and in particular, have the same dimension) for any
x ∈ Λd and x ′ ∈ Λd

′ . Moreover,

codimO(x) = dim Λd − dimO(x) = dimTxΛd − dim Λd .

It follows that dim Ext1(x , x) = 2 codimO(x) and therefore

dim Ext1(x , x ′) = codimO(x⊕x ′)−codimO(x)−codimO(x ′).



Rigid modules

We say that x ∈ Λd is rigid if the following equivalent conditions
are satisfied.

1 Ext1(x , x) = 0.

2 O(x) is open in Λd .

3 O(x) is an open subscheme of Λd .

4 The Zariski closure O(x) is an irr. comp. of Λd .

5 dim End(x) = dim GLd − dim Λd .

6 dim End(x) ≤ dim GLd − dim Λd .

7 The scheme Λd is smooth at x .

This condition can be checked by linear algebra.
If x1 ∈ Λd 1

and x2 ∈ Λd 2
are rigid, then

x1 ⊕ x2 is rigid ⇐⇒ Ext1(x1, x2) = 0 ⇐⇒ Ext1(x2, x1) = 0.



Rigid irr. comp.

An irr. comp. C of Λd is called rigid if it satisfies the following
equivalent conditions.

1 C contains a rigid module.
2 C contains a (unique) open GLd -orbit.
3 The scheme Λd is generically reduced at C .

In this case, the open orbit in C consists of the rigid modules in C ;
it is contained in the conormal bundle whose closure in C .

rigid irr. comp. ←→ rigid modules/GLd

The role of rigid modules and irr. comp. was highlighted in the
work of Geiss–Leclerc–Schröer (early 2000s –).
The rigidity condition for an irr. comp. can be checked
probabilistically by linear algebra.

Question

Is there a simple combinatorial criterion for the rigidity of an irr.
comp., or at least a deterministic algorithm?



Examples

Suppose that C is the irr. comp. corresponding to a
multisegment

∑r
i=1[ai , bi ] such that a1 ≤ · · · ≤ ar and

b1 ≥ · · · ≥ br . (Any two segments are comparable by
inclusion.) Then C is rigid. In fact, in this case C = E→(V ).
Similarly if bi = ai for all i (all segments are singletons). In
this case C = E←(V ).
Assume [ai , bi ] = [i , n − r + i ], i = 1, . . . , r . We get the proj.
indecomp. module pr corresponding to the r -th simple root.
More generally suppose that a1 < · · · < ar and b1 < · · · < br .
(We call such C special.) Then C is rigid.

◦ //

��

◦ //

��

◦ //

��

◦ //

��

◦

◦ //

��

◦ //

��

◦ //

��

◦

◦ // ◦ // ◦ // ◦



A non-rigid example (Geiss–Schröer 2005, following Leclerc
2003)

For n ≤ 4 all irr. comp. are rigid. (Λd is representation-finite.)
Consider n = 5, d = (1, 2, 2, 2, 1) (dim Λd = 12, dim GLd = 14)
and the irr. comp. C with multisegment

[4, 5] + [2, 4] + [3, 3] + [1, 2].

C is the closure of a one-parameter family of 11-dimensional orbits
and C is indecomposable. If O(x) 6= O(y) then dim Hom(x , y) = 2
and Ext1(x , y) = 0, but dim End(x) = 3 and dim Ext1(x , x) = 2.
Thus, C ⊕ C is an irr. comp. even though there is a short exact
sequence

0→ x → p2 ⊕ p4 → x → 0

where as before p2 and p4 have multisegments

[1, 4] + [2, 5] and [1, 2] + [2, 3] + [3, 4] + [4, 5].



Relation to representation theory

By Zelevinsky’s classification (1980), there is a bijection

C → πC

between the irr. comp. of Λd (i.e., multisegments of type d ) and
the irreducible subquotients (up to isomorphism) of

d1︷ ︸︸ ︷
|·| × · · · × |·| × · · · ×

dn︷ ︸︸ ︷
|·|n × . . . |·|n

(a representation of GLd1+···+dn(F )).
Also, Lusztig’s canonical bases (1990) of U(sln+1)d (the d -graded
piece of the positive part of the universal enveloping algebra of
type An) are indexed by irr. comp. of Λd .
Dually, if N is the maximal unipotent subgroup of GLn+1, then
C[N] is isomorphic to the subring of the Bernstein–Zelevinsky ring
of representations of GLk(F ), k ≥ 0 generated by |·| , . . . , |·|n. The
dual canonical basis corresponds to the irreducible representations
(Ariki, Grojnowski, Leclerc, Nazarov, Thibon, Zelevinsky)



Going back to the previous example
if C , C1, C2 corresponds to

m = [4, 5] + [2, 4] + [3, 3] + [1, 2]

m1 = [1, 4] + [2, 5], m2 = [1, 2] + [2, 3] + [3, 4] + [4, 5],

then (Leclerc, 2003)

πC × πC = πC⊕C + πC1 × πC2 = πC⊕C + πC1⊕C2
.

C ⊕ C and C1 ⊕ C2 have multisegments m + m and m1 + m2.



Conjecture 1 (Geiss–Schröer 2005 , after Marsh–Reineke)

Let Ci be irr. comp. of Λd i
, i = 1, 2. Assume that

there exist nonempty open subset Ui ⊂ Ci such that

Ext1(x1, x2) = 0 for all xi ∈ Ui , i = 1, 2.
(*)

Then πC1 × πC2 is irreducible.

As far as I know, the conjecture is wide open in general.

Strong form: the converse also holds.

If C1 = C2, the condition (*) is that C1 is rigid.

In general, (*) implies that C1 ⊕ C2 is an irr. comp..

The converse holds if C1 (say) is rigid, in which case the
condition (*) is that Ext1(x1, x2) = 0 for a rigid x1 ∈ C1 and
generic x2 ∈ C2. This condition can be checked efficiently by
a probabilistic algorithm.

If neither Ci is rigid (and C1 6= C2) then it is unclear how to
check (*) algorithmically.



Special case: type A2n−1, d = (1, 2, . . . , n, n − 1, . . . , 1)
(
∑

di = n2)

1• → 2• → · · · → n• → n−1• → · · · → 1•
Consider the following open, GLd -invariant subset of E→(V )

E [
→(V ) = {T ∈ E→(V ) : T

∣∣
Vi

is injective ∀i < n and surjective ∀i ≥ n}

Let X be the (complete) flag variety of GLn.
The map E [

→(V )→ X × X given by T 7→ (F1(T ),F2(T )) where

F1(T ) : 0 ( T n−1(V1) ( T n−2(V2) ( · · · ( T (Vn−1) ( Vn,

F2(T ) : 0 ( Ker(T
∣∣
Vn

) ( Ker(T 2
∣∣
Vn

) ( · · · ( Ker(T n−1∣∣
Vn

) ( Vn,

is a principal
∏

i 6=n GL(Vi )-bundle. Hence, we get an isomorphism
of GLn-varieties (cf. Kashiwara–Saito 1997)

E [
→(V )/

∏
i 6=n

GL(Vi )←→ X × X .



Thus, the GLd -orbits in E [
→(V ) correspond to the GLn-orbits in

X × X , which are parameterized by the symmetric group Sn.
If Yw , w ∈ Sn is a GLn-orbit in X × X (Bruhat cell), then the
corresponding irr. comp. Cw of Λd has multisegment

[1,w(1) + n − 1] + · · ·+ [n,w(n) + n − 1].

Denote by Xw the closure of Yw (Schubert variety).
For example, Xe = Ye = ∆X (diagonal), Yw0 open, Xw0 = X × X .

Theorem (•+Mı́nguez, 2018)

The following conditions on w ∈ Sn are equivalent.

1 Cw is rigid.

2 The conormal bundle of Yw ⊂ X has an open GLn-orbit.

3 Xw0w is (rationally) smooth.

4 πCw × πCw is irreducible.

5 (Lakshmibai–Sandhya, 1990) w is 1324 and 2143 avoiding.

The case w = 1324 is essentially Leclerc’s example.



Remarks

Conditions 2 and 3 are purely geometric.
Their equivalence leads to the following

Conjecture 2 (Mellit)

Let x ,w ∈ Sn with Yw ⊂ Xx (i.e., w ≤ x). Suppose that Xx is
smooth. Then the following conditions are equivalent

1 The conormal bundle of Yw ⊂ Xx has an open GLn-orbit.

2 The smooth locus of Xw0w contains Yw0x .

We proved this conjecture (along with a representation-theoretic
criterion) for x 231 avoiding (which implies that Xx is smooth).
The current proof is not conceptual.
In general, one can realize in a similar way the GLn-action on
P\GLn×Q\GLn for any parabolic subgroups P and Q of GLn.
Unfortunately, the naive analogue of the theorem in this context is
not true – nor do we have a conjectural replacement for the
smoothness condition.



Theorem (translation of Kang–Kashiwara–Kim–Oh (2015))

The following conditions are equivalent for a rep’n π of GLn(F ).

1 π × π is irreducible.

2 EndGL2n(F )(π ⊗ π) = C.
3 The normalized intert. oper. π × π → π × π is a scalar.

Under these conditions, for any irreducible representation σ of
GLm(F ) the socle of π× σ is irreducible and occurs with mult. one
in JH(π × σ). It is the image of the intert. oper. σ × π → π × σ.

This result gives an interesting perspective on Bernstein’s result
(1983) on the irreducibility of parabolic induction of unitarizable
representations (proved by a completely different method). It
yields a simplification of the proof of Tadic’s classification of the
unitary dual of GLn(F ) (1986).
Recall that conjecturally π × π is irreducible if and only if the
corresponding irr. comp. of Λd is rigid.



Subrepresentations

Let Ci be an irr. comp. of Λd i
, i = 1, 2 and d = d 1 + d 2. Let

S = {(x1, x2) ∈ C1 × C2 : dim Ext1(x1, x2) is minimal},

an open subset of C1 × C2. The GLd -invariant set

E(C1,C2) = {x ∈ Λd : ∃ a short exact sequence

0→ x2 → x → x1 → 0 with (x1, x2) ∈ S}

is irreducible (Crawley-Boevey–Schröer, 2002). Moreover,
C = E(C1,C2) is an irr. comp. (Rami Aizenbud)

Conjecture 3

πC is a subrepresentation of πC1 × πC2 .

If true, a generic extension of a generic x1 ∈ C1 by a generic
x2 ∈ C2 determines an irreducible subrepresentation of πC1 × πC2 .
(It is easy to compute E(C1,C2) by a probabilistic algorithm.)



Example

The following diagram is an extension of the red part by the blue
part.
Recall that the dots represent a basis for V , the grading is by the
horizontal position; the horizontal arrows define A ∈ E→(V ) and
the diagonal arrows define B ∈ E←(V ).

◦ //
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◦ //

��

◦ //

��

◦ //

��

◦

◦ //

��

◦ //

��

◦ //

��

◦

◦ // ◦ // ◦ // ◦



Corroboration

Theorem (•+Mı́nguez, 2016, 2020)

Suppose that C1 or C2 is a direct sum of special irr. comp.. Then
there is a simple combinatorial way to determine the multisegment
of C = E(C1,C2) from the multisegments m1 and m2 of C1 and
C2. Moreover, πC = soc(πC1 × πC2).



A special case

Let mi be the multisegments of Ci and write mi =
∑

j∈Ii ∆j ,
i = 1, 2 with I1 ∩ I2 = ∅.
Define a bipartite graph G = (X ,Y ,E ) by

X ={(r , s) ∈ (I1 × I2) ∪ (I2 × I1) : ∆r ≺ ∆s}

Y ={(r , s) ∈ (I1 × I2) ∪ (I2 × I1) :
→
∆r ≺ ∆s}

E ={((r , s), (r , t)) ∈ X × Y :
→
∆s ≺ ∆t}∪

{((r , t), (s, t)) ∈ X × Y :
→
∆s ≺ ∆r}

where for ∆ = [a, b], ∆′ = [a′, b′] we write

∆ ≺ ∆′ ⇐⇒ a ≤ a′ ≤ b ≤ b′,
→
∆ = [a + 1, b + 1].

Theorem

If C1 or C2 is special then πC1 × πC2 is irreducible if and only if
there exists a matching in G which covers all vertices of Y .



Odds and ends

Question

Is there a relation between the set of irreducible subquotients of
πC1 × πC2 and the set of irr. comp. containing C1 ⊕ C2 ?

For instance, it is clear that if Ci correspond to mi , i = 1, 2 and C
corresponds to m1 + m2 then C ⊃ C1 ⊕ C2.

Question

Is there a practical way to check whether a given x ∈ Λd is
contained in a given irr. comp.?



Standard modules and Robinson–Schensted–Knuth

Let C be an irr. comp. with multisegment m =
∑r

i=1[ai , bi ]. Apply
the RSK correspondence to (ai , bi )

r
i=1 to obtain a pair (P,Q) of

“semistandard” Young tableaux of the same shape. The entries of
P are the ai ’s and the entries of Q are the bi ’s. In our conventions,
the entries along each row (of both P or Q) are strictly decreasing
while the entries down each column are weakly decreasing.
Note that we do not get all such pairs (P,Q) because of the
restriction ai ≤ bi . Let k be the number of rows of P and Q and
for each i = 1, . . . , k let Ci be the special irr. comp. with
multisegment

∑ni
j=1[pi ,j , qi ,j ] formed by the entries of the i-th row

of P and Q. (Indeed, pi ,j ≤ qi ,j .)

Theorem (Max Gurevich+•, 2020)

πC is a subrepresentation of ΠC := πCk
× · · · × πC1

In fact, Gurevich proved that the socle of ΠC is irreducible (hence
equal to πC ) and occurs with multiplicity one in JH(ΠC ).



Upper triangularity

We can think of ΠC as a new (?) kind of standard module.
Define a partial order on “semistandard” Young tableaux by

Y ≤ Y ′ if shape(Y≥r ) ≺ shape(Y ′≥r ) for all r ≥ 0 ,

where shape(Y≥r ) is the Young diagram of the sub “semistandard”
tableaux consisting of the entries ≥ r and ≺ is the dominance order

(λ1, . . . , λk) ≺ (λ′1, . . . , λ
′
k ′) if k ≤ k ′ and

j∑
i=1

λi ≥
j∑

i=1

λ′i ∀j

Conjecture 4

Suppose that πC ′ is an irreducible subquotient of ΠC . Let (P ′,Q ′)
be the RSK of the corresponding multisegment. Then P ′ ≤ P and
Q ′ ≤ Q.



A family of standard modules

We can enhance this construction as follows. Fix a “dummy”
multisegment d =

∑l
i=1[ti , ti − 1] with 1 ≤ ti ≤ n and apply RSK

to m + d. The previous theorem is still valid. We get standard
modules Πd

C . For an appropriate choice of d, Πd
C can be either the

Zelevinsky standard module or the Langlands standard module.
Thus, we get an interpolation between the two.
I do not know what lies behind this construction.


