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What this talk is about
G(R) real reductive algebraic group.

Example: Sp(2n,R)

(π,Hπ) irreducible (usually∞-diml) rep of G(R).

Example: Hπ = half-densities on RP2n−1.

Study π  WF(π), a simple geometric invariant of π.

WF(π) ⊂ g(R)∗, closed G(R)-invt cone.

Ex: WF(half-dens on RP2n−1) = rk ≤ 2 nilp sympl.

Ex: WF(generic irr of Sp(2n,R)) = all nilp sympl.

WF encodes interesting information about π.

Easy algebra: G(R) has finite # nilp orbits on g(R)∗.

Easy soft analysis: WF(π) = finite union of nilp orbits.

Deep result from Lusztig: π “integral” =⇒ WF(π) special.

PLAN: sketch defs, sketch Geck, Dong-Yang integral def
of special, ask for direct proof of Lusztig =⇒ above.
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Howe’s wavefront set
π nice irr rep of G(R) on Hilbert space Hπ.

Read Howe’s beautiful Wave front sets of reps of Lie
groups for def of WF(π) ⊂ g(R)∗: soft analysis.

Outline: trace class ops T on Hπ  “matrix coeff”
distributions πT on G WF(πT ) ⊂ T ∗G.

Big idea for controlling WF(π):

z ∈ Cent U(g) π(z) =scalar
 differential equation (z − π(z)) · πT = 0
 WF(πT ) ⊂ zeros of symbol of z.

Symbols of z ∈ Cent U(g) are homog polys p ∈ S(g)G.

Real nilpotent cone (where WF(π) must live!) is

N ∗R = {λ ∈ g(R)∗ | p(λ) = 0 (p ∈ S(g)G homogeneous)}.

N ∗R/G(R) finite =⇒ WF(π) = finite # G(R) orbs.
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Calculating nilpotent orbits
WF(π) is elementary, uncomplicated invariant of π.

Zeroth problem: describe G(R) orbits OR on g(R)∗.

Ts(R) ⊂ G(R) Iwasawa (most split) max torus.

X∗,h(Ts) = Homalg(R×,Ts(R)) ⊂ Homalg(C×,Ts) = X∗(Ts).

d ∈ X∗,h(Ts) Lie algebra Z-grading

g(R) =
∑
n∈Z

g(R)d (n), ts(R) ⊂ g(R)d (0).

Levi G(R)d has open orbits on each g(R)∗d (n) (n 6= 0)

Thm (Jacobson-Morozov) OR ⊂ N ∗R  d ∈ X∗,h(Ts) so
OR meets g(R)∗d (2) in open, d ∈ [g(R)d (2), g(R)d (−2)].

This defines a finite-to-one map

N ∗R/G(R) X∗,h(Ts)/Ws(R) ' dom cowts X+
∗,h(Ts).

Fiber over d ! open orbits of G(R)d on g(R)∗d (2)

Dominant coweight d called the Dynkin diagram of OR.
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Structure of orbits
Nilp orb OR  dom d ∈ Homalg(R×,Ts(R)),

OR meets g(R)∗d (2) in open, d ∈ [g(R)d (2), g(R)d (−2)].

g(R)d (n) = {X ∈ g(R) | [d ,X ] = nX}
g(R)∗d (n) = [g(R)d (−n)]∗.

If α ∈ R+ simple, then α(d) = 0 or 1 or 2.

Partition simple roots Π as Πd (0) ∪ Πd (1) ∪ Πd (2).

Gd = Levi subgp ! Πd (0)

gd (−1) = sum of Gd irrs, hwts − α ∈ Πd (1)

P = GdU, u =
∑

n>0 gd (n).

Fix λ ∈ OR ∩ g(R)∗d (2). Then Gλ ⊂ P, and

Gλ = [Gd ]λ · Uλ (Levi decomp)

uλ =
∑

n>0 gλd (n),

all decompositions defined over R.
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Symplectic structure on orbits
Nilp orb OR  dom d ∈ Homalg(R×,Ts(R)),

OR meets g(R)∗d (2) in open, d ∈ [g(R)d (2), g(R)d (−2)].

λ ∈ OR ∩ g(R)∗d (2). Then Gλ ⊂ P, and

Gλ = [Gd ]λ · Uλ (Levi decomp)

uλ =
∑

n>0 gλd (n)

TeGλ(G · λ) = g/gλ

= gd (−1) +
∑

m≥0

[
gd (−m − 2) + gd (m)/gd (m)λ

]
.

OR is a symplectic manifold: nondegenerate form

ωλ : g(R)/g(R)λ × g(R)/g(R)λ → R
ωλ(X ,Y ) = λ([X ,Y ])

[gd (−m − 2)]∗ 'ωλ
gd (m)/gd (m)λ (m ≥ 0)

ωλ nondegenerate on gd (−1).

ωλ needed to relate OR to representation theory.

Geck conj: OR special ⇐⇒ ωλ integral (to be explained).
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Integral structures on g
Integral structure on N-diml Lie algebra g over char 0 field
k is free rank N lattice gZ ⊂ g subject to

g = gZ ⊗Z k , [gZ, gZ] ⊂ gZ.

Equivalent: basis {X1, . . . ,XN} subject to

[Xi ,Xj ] =
∑

k

ck
ij Xk , ck

ij ∈ Z.

Example: g = sl(2), basis (this one we’ll generalize)

H =

(
1 0
0 −1

)
X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
,

[H,X ] = 2X , [H,Y ] = −2Y , [X ,Y ] = H.

Example: g = so(3), basis (but this is worth more study!)

U =

 0 1 0
−1 0 0
0 0 0

 , V =

0 0 0
0 0 1
0 −1 0

 , W =

 0 0 1
0 0 0
−1 0 0

 ,

[U,V ] = W , [V ,W ] = U, [W ,U] = V .
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Chevalley integral structure

g ⊃ b ⊃ t cplx reduc; roots ∆(g, t) ⊂ t∗, coroots ∆∨(g, t) ⊂ t.

Integral structure is called split if

1. Have integral basis = basis {X1, . . . ,X`} of t, root
vectors Xα for each root; and

2. [Xα,X−α] is equal to the coroot Hα = α∨.

Chevalley: in a split integral structure, set of root vecs up
to sign {±Xα} is determined up to Ad(T ), so should be
thought of as unique.

Still in a split integral structure,

Z∆∨ ⊂ tZ ⊂ {t ∈ t | α(t) ∈ Z (α ∈ ∆)};
and any such lattice tZ is allowed.

These tZ are the X∗(T )! root data for alg G, Lie(G) = g.

If g semisimple, split integral structure (unique up to
Ad(T )) with tZ = Z∆∨ is the Chevalley integral structure.
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Integral linear functionals
split int str gZ ⊂ g g∗Z =def HomZ(gZ,Z) ⊂ g∗.

OR weakly integral if OR ∩ g∗Z 6= ∅; includes nilpotent.

Precisely: elt d ∈ coroot lattice ⊂ tZ; OR has element

λ ∈ g∗d,Z(2) : λ(Xα) = cα ∈ Z (α ∈ ∆, α(d) = 2).

Symplectic form ωλ defines

ωλ,Z : gZ/g
λ
Z ↪→

[
gZ/g

λ
Z

]∗
.

Nondegen/R implies im(ωλ,Z) has finite index Nλ.

Weights of d decomposition factors ωλ,Z as sum of

ωλ,Z(m) : gd,Z(m)/gd,Z(m)λ ↪→ [gd,Z(−m − 2)]∗ (m ≥ 0),

ωλ,Z(−1) : gd,Z(−1) ↪→ gd,Z(−1)∗.

Each of these has finite index Nλ(m) in its image, and

Nλ = Nλ(−1) ·
∏

m≥0Nλ(m).

λ is strongly integral if Nλ = 1; that is, if ωλ,Z is nondeg/Z.

λ is Geck integral if Nλ(−1) = 1; that is, if ωλ,Z(−1) is nondeg/Z.
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Lusztig’s notion of special in Ŵ

W Weyl grp for G Chevalley group G(Fq) ⊃ B(Fq).

Natural bij σ! πq(σ) between irrs σ ∈ Ŵ and irrs πq(σ)
of G(Fq) appearing in fns on G(Fq)/B(Fq).

generic degree P̃σ(q) =def dimπq(σ): poly in q, Q-coeffs.

Cpt mfld X = G(C)/B(C): cohom only even degs.

W acts naturally on H∗(X ).  regular rep of W .

Can therefore define fake degree

Pσ(q) =
∑r

i=0(mult of σ in H2i (X ))q i

poly in q, nonneg integer coeffs summing to dimσ.

G = GL(n), W = Sn: P̃σ = Pσ.

Define ãσ = least qa in P̃σ, aσ = least qa in Pσ.

Lusztig 1979: ãσ ≤ aσ; say σ is special if ãσ = aσ.
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Lusztig’s notion of special for nilpotent orbits

Springer (1978) defined inclusion j

j : nilpotent orbits in g∗ ↪→ Ŵ , O 7→ j(O).

Easy: dim(O) = 2r − 2aj(O) (r = #pos roots).

Springer (1978) also defined surjection p (p ◦ j = id)

p : Ŵ � nilpotent orbits in g∗, σ 7→ p(σ).

Easy: dim(p(σ)) ≥ 2r − 2aσ, equality iff j ◦ p(σ)) = σ.

KL theory partitions Ŵ in families (! two-sided cells).

Theorem (Lusztig)

1. Each family F ⊂ Ŵ has unique special rep σs(F).
2. Function ãσ is constant on each family.
3. Function aσ has unique minimum on F , at σs(F).
4. σs(F) is j(O(F)), special nilpotent orbit.
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Geck conj/Dong-Yang thm on special nilps

G ⊃ B ⊃ T , O ⊂ g∗  Jacobson-Morozov dom d ∈ X∗(T ):
d ∈ [gd (2), gd (−2)], O ∩ g∗d (2) open in g∗d (2)

 ωλ symplectic on g/gλ, ωλ(−1) on gd (−1) ⊂ g/gλ.

Fix also split int str gZ ⊂ g g∗Z ⊂ g∗.

May choose representative λZ ∈ O ∩ g∗d,Z(2).

Conj (Geck 2018) O special iff ∃λZ so ωλZ(−1) nondeg/Z.

Proved by Geck (types EFG), Dong-Yang (2019) (types ABCD).

Proof is case-by-case using enumeration of special nilps.

Recall that hypothesis Geck integral in Geck conjecture is
weaker than natural hypothesis strongly integral.

Hope: Geck integral equivalent to strongly integral.
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Lusztig thm on special nilps

Theorem (Lusztig) Suppose π irr rep of real reductive
G(R) of integral infl char. Then there is a special O ⊂ g∗

so that WF(π) is closure of some real forms Oj
R of O.

Proof is by KL theory, properties of families in Ŵ .

Hope (point of talk): there is a conceptual path

π integral infl char WF(π) strongly integral.

Such a path could give a conceptual proof
(O special) =⇒ (O str int) =⇒ (O Geck int).

which is half of Geck’s conjecture.
Path to Hope: ∃? nice Z-forms of reps with int infl char.

I like this question. Can find in Green Monster (Vogan 1981)
Z-forms for SL(2,R) reps in block of finite-diml.

First easy exercise: other blocks of int infl char. for SL(2,R)?
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