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m Examples: GL,(R), GL,(C), Sp(2n,R), SO(n,R)

m Unitary rep = Hilbert space H, continuous grp hom
T GR — U(H)

Problem (Gelfand, 1930s)

Determine éﬁ := {irr unitary reps of Gg} for arbitrary Gg
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(Weyl,1920s), SL>(R) (Bargmann, 1947), GL,(R),
GLn(C), GL,(H) (Vogan, 1986), complex classical groups
(Barbasch, 1989), some low-rank groups...
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Problem of Unitary Dual

m Ggr = real reductive group

m Examples: GL,(R), GL,(C), Sp(2n,R), SO(n,R)

m Unitary rep = Hilbert space H, continuous grp hom
T GR — U(H)

Problem (Gelfand, 1930s)

Determine éﬁ := {irr unitary reps of Gg} for arbitrary Gg

m Answer known for: connected compact groups
(Weyl,1920s), SL>(R) (Bargmann, 1947), GL,(R),
GLn(C), GL,(H) (Vogan, 1986), complex classical groups
(Barbasch, 1989), some low-rank groups...

m Also known: algorithm for G (Atlas, 2000s)
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m Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence
{Gg — orbits on gp} e~ Gr

approximately a bijection
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Mason-Brown Conjecture (Orbit Method)

Should be a correspondence
Orbit Method

{Gg — orbits on gp} e~ Gr
approximately a bijection

m LHS = symplectic manifolds (with Gr-action)
m RHS = hilbert spaces (with Gg-action)

m Right arrow: geometric quantization, left arrow: classical
limit
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m Orbit O(p, ) C g (Jordan normal form)
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Groups m Let p = (p1, ..., px) = partition of n, and
L — k
Maso:-clgsrown V= (V].?""Vk) ER

m Orbit O(p, ) C g (Jordan normal form)
. m Orbit Method:GL( )
rbit Method n
O(p, V) ~ IndGL(p1)><...><GL(pk)
m RHS: ‘looks like' functions on O(p, v)

det’™ ®... ® det’*
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Groups m Let p = (p1, ..., px) = partition of n, and
Maslc;:f;iown V= (V].?"‘7Vk) 6 Rk

m Orbit O(p, ) C g (Jordan normal form)

m Orbit Method:GL( ) ' '
O(p,v) ~ Ind g/ oyx. 61 (py) d6 @ @ det™

m RHS: ‘looks like' functions on O(p, v)

m Caveats:

Orbit Method

more complicated when O(p, v) nilpotent
O(p,v) = compact quotient O(p,v)/ ~

functions = L? sections of Hermitian line bundle



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Unipotent
Representa-
tions

Unipotent Representations: Intuition

m Kostant, Kirillov, ..., Vogan, Zuckerman: can attach irred
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Unipotent Representations: Intuition

m Kostant, Kirillov, ..., Vogan, Zuckerman: can attach irred
unitary reps to semisimple orbits (parabolic and
cohomological induction)

m Problem of unitary dual ‘reduces’ to

Find a natural correspondence

O = nilptnt orbt ~» Unip(O) = fin set of irred unitary reps
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Unipotent Representations: Arthur

Let G, g be complexifications, N' C g nilpotent cone
Form Langlands dual GV, g¥, NV C gV
Lusztig, Spaltenstein, Barbasch-Vogan

d:NV/GY - N/G

Dual orbit ®V determines infl char for G:

O (¥, fY, hY) — %hv chY ~p*

And a maximal ideal

10Y) = I(Gh") € Ula)
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Unip?(0) = {X irred | Ann(X) = I(OY),d(OY) = O}
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Unip?(0) = {X irred | Ann(X) = I(OY),d(OY) = O}

If O = {0}, then Unip?(O) = {1 — dim reps}
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Unipotent Representations: Arthur

Definition (Arthur, Barbasch-Vogan)
Unip?(0) = {X irred | Ann(X) = I(OY),d(OY) = O}

Example

If O = {0}, then Unip?(O) = {1 — dim reps}

Example

If O = principal, then Unip?(O) = {irred reps of infl char 0}.
. . Gg
Includes prin series IndBR(C.
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Example

Let Gg = Sp(2n, C). Extremely important unitary rep V called
oscillator representation. Known: V attached to minimal
nilpotent orbit (quantization of reg functions).

Unipotent
Representa-

tions Smaller problem: Unip?(O) is too small, even when O is
special.

Example

Let Gg = SL,(C). Then Unip?(OP'™) consists of infl char = 0.
Unitary rep of infl char (”;nl, ”2773, v 1277”) attached to OP™™,
gzation of universal cover.
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m If | C U(g),
U(g)/! = fin gen U(g) — mod
gr(U(g)/!l) = fin gen S(g) — mod
V(1) := Supp (gr (U(g)/1)) C g



Unipotent Representations: Vogan

pEe wIf1C U(g),
t.;§:£t§:a| U(g)/! = fin gen U(g) — mod

roups

Lucas gr(U(G)/l) = ﬂn gen 5(9) - mOd
Mason-Brown V(I) = Supp (gr (U(g)/l)) C g*

m Joseph: If | primitive, V(I) = O.
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Unipotent Representations: Vogan

Representa = If 1.C U(g),
ticénz%ggiv:al U(g)/! = fin gen U(g) — mod
Lucas gr (U(g)/1) = fin gen 5(g) — mod
e V(1) := Supp (gr (U(g)/1)) C ¢°
m Joseph: If | primitive, V(I) = O.
e Definition (Vogan)

tions

Infl char X is weakly unipotent for O if rational for wt lattice

and
A =min{u € X + wt lattice : V(/(u)) = O}

Then
Unip"(0) = {X irred | Ann(X) = I(\), A = wkly unptnt}
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Groups
Maslc;:f;iown We|ght Iatt|ce = Z
roots = {+2}
fundamental chamber = R>g
Unipotent 0 fiaed{l.2.3 ...
vy = {10 TAS23
N else

Hence
. 1
Unip” (OP™) «~ X € [0, 5] nNQ
Unip”(0) e~ A =1
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Example

If Gr = SL»(R), O = principal, weak unipotent infl chars for O
are: [0,3]NQ.

Unipotent
Representa-
tions

m Problem: many reps are non-unitary

Example

If Gr = SLo(R), two irreps at infl char 3. One unitary, one
non-unitary.
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m Losev, Matvieievskyi, Namikawa: classification of
quantizations of C[O]

m There is always a distinguished quantization A(O)
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Unipotent Representations: Losev, Mason-Brown,
Matvieievskyi

m Let O — O be a G-equivariant covering

m Losev, Matvieievskyi, Namikawa: classification of
quantizations of C[O]

m There is always a distinguished quantization A(O)
= L-MB-M:

J(0) = ker (U(g) — A(O))

maximal, completely prime
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Redoctive. m Let O — O be a G-equivariant covering
Groups
Lucos m Losev, Matvieievskyi, Namikawa: classification of
e quantizations of C[O]
m There is always a distinguished quantization A(O)
= L-MB-M:
Unipotent - ~
e J(O) :=ker (U(g) — A(O))

maximal, completely prime

Definition (L-MB-M)
Unip(0) = {X irred | Ann(X) = J(O) for some O — O}



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Unipotent
Representa-
tions

Unipotent Representations: Losev, Mason-Brown,
Matvieievskyi

Theorem (L-MB-M)
In classical types,

Unip?(O) C Unip(O) C Unip"(0O)
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Unipotent Representations: Losev, Mason-Brown,

Matvieievskyi

Theorem (L-MB-M)
In classical types,

Unip?(O) C Unip(O) C Unip"(0O)

Unip*(OP"2) for Sp(4, R):




m Let Kr = max cmptct subgrp

«Or «Fr o«

DA



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Overview of
Thesis

Overview of Thesis

m Let Kg = max cmptct subgrp
m Irreps of Kr parameterized by int dom weights. If X is a
nice representation of Gg, get a ‘multiplicity’ function

mult : /'/(Eg — Z>0



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Overview of
Thesis

Overview of Thesis

m Let Kg = max cmptct subgrp

m Irreps of Kr parameterized by int dom weights. If X is a
nice representation of Gg, get a ‘multiplicity’ function

mult : /'/(Eg — Z>0

m Powerful invariant: rate of growth determines size of
representation (i.e. Gelfand-Kirillov dimension) and shape
(i.e. associated variety)
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Croups B Let Kr = max cmptct subgrp

Lucas m Irreps of Kr parameterized by int dom weights. If X is a
Mason-Brown . . f e ey .
nice representation of Gg, get a ‘multiplicity’ function

mult : /'/(Eg — Z>0

Overdien of m Powerful invariant: rate of growth determines size of
Thesis representation (i.e. Gelfand-Kirillov dimension) and shape
(i.e. associated variety)
m In my thesis | study restriction to Kg of unipotent
representations
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is birational. Three results in thesis:
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built out of K-structure of Unip"(Oy)
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Overview of Thesis

Lusztig-Spaltenstein:
Q=LUCG Indf:O;+ O, =: dense orbit in G(u+ O)
. Induction is birational if moment map
G xq(u+0) = Oy

is birational. Three results in thesis:

If Oy is birationally induced, K-structure of Unip”(Oy)
built out of K-structure of Unip”(Oy)

If O4 birationally rigid, Vogan has conjecture regarding
K-structure of Unip"” (). | prove this conjecture in
many cases.

If Oy is principal, complete classification of Unip?(Oy)
and determination of K-types
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Lucas 0 = Cartan involution K = G? g=tPp
Mason-Brown

m Can assume Gg is quasi-split (else, Unip?(OP"") = ()
m Distinguished element of Unip?(OP'):

S(Gr) == Indg'C

Principal

Unipotent m Kostant:

Representa-

5(Gr) ~k CIN Np]
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Principal Unipotent Reps

A unipotent parameter for OP™™ is a pair (g, ), where

m q=[&®uis a #-stable parabolic
m Y is a character of the subgroup Lg C Ggr

such that
L is split
dx = —p(u)

u M p contains a principal nilpotent element
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Unipotent - e
Ry Definition
tions of Real i - )
Reductive A unipotent parameter for OP™ is a pair (q, x), where
roups
lares m q=[&®uis a #-stable parabolic
Mason-Brown

m Y is a character of the subgroup Lg C Ggr

such that
L is split
dx = —p(u)

u M p contains a principal nilpotent element

Principal

Unipotent Theorem (MB)
Representa-

flons There is a bijection

Param(OP"™") /K ~ Unip?(OP™) (q,x) — CohlIndf (x ® S)
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Principal Unipotent Reps: Proof Sketch

m Harish-Chandra: category equivalence

HC : Rep(Gr) ~ M*(g, K)

m Can define sheaf D* of twisted diff ops on B and

M(D*, K) = K-equivariant D*-modules on B

m Beilinson-Bernstein: quotient functor
[ M(DA, K) - M(g,K)

Equivalence if A regular.
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Unip?(OP"™) ~ {irred M € M(D° K) : [(M) # 0}
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m Hence:

Unip?(OP"™) ~ {irred M € M(D° K) : [(M) # 0}

m Beilsinson-Bernstein:

K—orb ocC sys
{irreds in M(D%, K)} ~ {(Z " C" B,y "< )}

irred subsheaf of jiy < (Z,v) j:ZCB
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Representa- = Hence:
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m Beilsinson-Bernstein:

K—orb ocC sys
{irreds in M(D%, K)} ~ {(Z " C" B,y "< )}

irred subsheaf of jiy < (Z,v) j:ZCB

m Choose a base point:
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Unipotent
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Principal Unipotent Reps: Proof Sketch

m The non-vanishing condition I'(B, i) # 0 imposes a
constraint in each simple root direction

m These conditions precisely guarantee: (b, x) comes from a
unipotent parameter (q, x)
m In this case, jiy is irreducible and

, K
(B, jry) = Indy ke x
K LLOK
= Indﬁ,LmKlndmb,HmKX
= Cohlndgx ® S(Lg)
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Principal Unipotent Reps: K-types

Nice feature of this classification: K-structure is ‘visible'
Kostant: S ~x C[N Np]
Blattner: gives K-structure of cohomological induction

Combined: we get nice formulas for K-types of
Unip?(OP*™) which are computable using Borel-Weil-Bott
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Five elements of Unip?(OP""): principal series S, two limit of
discrete series, and two ‘in-between’
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