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Problem of Unitary Dual

GR = real reductive group

Examples: GLn(R), GLn(C), Sp(2n,R), SO(n,R)

Unitary rep = Hilbert space H, continuous grp hom
π : GR → U(H)

Problem (Gelfand, 1930s)

Determine ĜR := {irr unitary reps of GR} for arbitrary GR

Answer known for: connected compact groups
(Weyl,1920s), SL2(R) (Bargmann, 1947), GLn(R),
GLn(C), GLn(H) (Vogan, 1986), complex classical groups
(Barbasch, 1989), some low-rank groups...

Also known: algorithm for ĜR (Atlas, 2000s)
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Orbit Method

Let gR = Lie(GR)

Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence

{GR − orbits on g∗R}! ĜR

approximately a bijection

LHS = symplectic manifolds (with GR-action)

RHS = hilbert spaces (with GR-action)

Right arrow: geometric quantization, left arrow: classical
limit



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Problem of
Unitary Dual

Orbit Method

Unipotent
Representa-
tions

Overview of
Thesis

Principal
Unipotent
Representa-
tions

Orbit Method

Let gR = Lie(GR)

Big idea (Kostant, Kirillov):

Conjecture (Orbit Method)

Should be a correspondence

{GR − orbits on g∗R}! ĜR
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Example (GLn(R))

Let p = (p1, ..., pk) = partition of n, and
ν = (ν1, ..., νk) ∈ Rk

Orbit O(p, ν) ⊂ g∗0 (Jordan normal form)

Orbit Method:
O(p, ν) Ind

GL(n)
GL(p1)×...×GL(pk ) detiν1 ⊗...⊗ detiνk

RHS: ‘looks like’ functions on O(p, ν)

Caveats:

more complicated when O(p, ν) nilpotent

O(p, ν) =⇒ compact quotient O(p, ν)/ ∼
functions =⇒ L2 sections of Hermitian line bundle
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Unipotent Representations: Intuition

Kostant, Kirillov, ..., Vogan, Zuckerman: can attach irred
unitary reps to semisimple orbits (parabolic and
cohomological induction)

Problem of unitary dual ‘reduces’ to

Problem

Find a natural correspondence

O = nilptnt orbt Unip(O) = fin set of irred unitary reps
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Unipotent Representations: Arthur

Let G , g be complexifications, N ⊂ g nilpotent cone

Form Langlands dual G∨, g∨, N∨ ⊂ g∨

Lusztig, Spaltenstein, Barbasch-Vogan

d : N∨/G∨ → N/G

Dual orbit O∨ determines infl char for G :

O∨ 7→ (e∨, f ∨, h∨) 7→ 1

2
h∨ ∈ h∨ ' h∗

And a maximal ideal

I (O∨) = I (
1

2
h∨) ⊂ U(g)
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Definition (Arthur, Barbasch-Vogan)

Unipa(O) = {X irred | Ann(X ) = I (O∨), d(O∨) = O}

Example

If O = {0}, then Unipa(O) = {1− dim reps}

Example

If O = principal, then Unipa(O) = {irred reps of infl char 0}.
Includes prin series IndGR

BR
C.
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Arthur’s definition is too restrictive:

1 Big problem: Unipa(O) = ∅ unless O is special

Example

Let GR = Sp(2n,C). Extremely important unitary rep V called
oscillator representation. Known: V attached to minimal
nilpotent orbit (quantization of reg functions).

2 Smaller problem: Unipa(O) is too small, even when O is
special.

Example

Let GR = SLn(C). Then Unipa(Oprin) consists of infl char = 0.
Unitary rep of infl char (n−12n ,

n−3
2n , ...,

1−n
2n ) attached to Oprin,

qzation of universal cover.
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Unipotent Representations: Vogan

If I ⊂ U(g),

U(g)/I = fin gen U(g)−mod

gr (U(g)/I ) = fin gen S(g)−mod

V (I ) := Supp (gr (U(g)/I )) ⊂ g∗

Joseph: If I primitive, V (I ) = O.

Definition (Vogan)

Infl char λ is weakly unipotent for O if rational for wt lattice
and

λ = min{µ ∈ λ+ wt lattice : V (I (µ)) = O}

Then

Unipw (O) = {X irred | Ann(X ) = I (λ), λ = wkly unptnt}
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Example

Let GR = SL2(R). Then

weight lattice = Z
roots = {±2}

fundamental chamber = R≥0

V (I (λ)) =

{
{0} if λ ∈ {1, 2, 3, ...}
N else

Hence

Unipw (Oprin)! λ ∈ [0,
1

2
] ∩Q

Unipw (0)! λ = 1
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Vogan’s definition is too broad:

Problem: typically #Unipw (O) =∞.

Example

If GR = SL2(R), O = principal, weak unipotent infl chars for O
are: [0, 12 ] ∩Q.

Problem: many reps are non-unitary

Example

If GR = SL2(R), two irreps at infl char 1
2 . One unitary, one

non-unitary.



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Problem of
Unitary Dual

Orbit Method

Unipotent
Representa-
tions

Overview of
Thesis

Principal
Unipotent
Representa-
tions

Unipotent Representations: Vogan

Vogan’s definition is too broad:

Problem: typically #Unipw (O) =∞.

Example

If GR = SL2(R), O = principal, weak unipotent infl chars for O
are: [0, 12 ] ∩Q.

Problem: many reps are non-unitary

Example

If GR = SL2(R), two irreps at infl char 1
2 . One unitary, one

non-unitary.



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Problem of
Unitary Dual

Orbit Method

Unipotent
Representa-
tions

Overview of
Thesis

Principal
Unipotent
Representa-
tions

Unipotent Representations: Vogan

Vogan’s definition is too broad:

Problem: typically #Unipw (O) =∞.

Example

If GR = SL2(R), O = principal, weak unipotent infl chars for O
are: [0, 12 ] ∩Q.

Problem: many reps are non-unitary

Example

If GR = SL2(R), two irreps at infl char 1
2 . One unitary, one

non-unitary.



Unipotent
Representa-
tions of Real
Reductive
Groups

Lucas
Mason-Brown

Problem of
Unitary Dual

Orbit Method

Unipotent
Representa-
tions

Overview of
Thesis

Principal
Unipotent
Representa-
tions

Unipotent Representations: Losev, Mason-Brown,
Matvieievskyi

Let Õ → O be a G -equivariant covering

Losev, Matvieievskyi, Namikawa: classification of
quantizations of C[Õ]

There is always a distinguished quantization A(Õ)

L-MB-M:

J(Õ) := ker
(
U(g)→ A(Õ)

)
maximal, completely prime

Definition (L-MB-M)

Unip(O) = {X irred | Ann(X ) = J(Õ) for some Õ → O}
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)
maximal, completely prime

Definition (L-MB-M)

Unip(O) = {X irred | Ann(X ) = J(Õ) for some Õ → O}
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L-MB-M:
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J(Õ) := ker
(
U(g)→ A(Õ)
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Unip∗(Oprin) for Sp(4,R):

(12 , 0) (12 , 0)

(14 ,
1
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Let KR = max cmptct subgrp

Irreps of KR parameterized by int dom weights. If X is a
nice representation of GR, get a ‘multiplicity’ function

mult : K̂R → Z≥0

Powerful invariant: rate of growth determines size of
representation (i.e. Gelfand-Kirillov dimension) and shape
(i.e. associated variety)

In my thesis I study restriction to KR of unipotent
representations
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Lusztig-Spaltenstein:

Q = LU ⊂ G IndGL : Ol 7→ Og =: dense orbit in G (u +Ol)

.

Induction is birational if moment map

G ×Q (u +Ol)→ Og

is birational. Three results in thesis:

1 If Og is birationally induced, K -structure of Unipw (Og)
built out of K -structure of Unipw (Ol)

2 If Og birationally rigid, Vogan has conjecture regarding
K -structure of Unipw (Og). I prove this conjecture in
many cases.

3 If Og is principal, complete classification of Unipa(Og)
and determination of K -types
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Let
θ = Cartan involution K = G θ g = k⊕ p

Can assume GR is quasi-split (else, Unipa(Oprin) = ∅)
Distinguished element of Unipa(Oprin):

S(GR) := IndGR
BR

C

Kostant:
S(GR) 'K C[N ∩ p]
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Definition

A unipotent parameter for Oprin is a pair (q, χ), where

q = l⊕ u is a θ-stable parabolic

χ is a character of the subgroup LR ⊂ GR

such that

1 LR is split

2 dχ = −ρ(u)

3 u ∩ p contains a principal nilpotent element

Theorem (MB)

There is a bijection

Param(Oprin)/K ' Unipa(Oprin) (q, χ) 7→ CohIndgq (χ⊗ S)
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Harish-Chandra: category equivalence

HC : Repλ(GR) ' Mλ(g,K )

Can define sheaf Dλ of twisted diff ops on B and

M(Dλ,K ) = K -equivariant Dλ-modules on B

Beilinson-Bernstein: quotient functor

Γ : M(Dλ,K )� Mλ(g,K )

Equivalence if λ regular.
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Hence:

Unipa(Oprin) '
{

irred M∈ M(D0,K ) : Γ(M) 6= 0
}

Beilsinson-Bernstein:

{irreds in M(D0,K )} ' {(Z
K−orbt
⊂ B, γ loc sys→ Z )}

irred subsheaf of j!γ ← (Z , γ) j : Z ⊂ B

Choose a base point:

{(Z , γ)} ' {(b ⊂ g, χ ∈ ĤR) : dχ = −ρ(n)}/K

and
Γ(B, j!γ) ' Indg,Kb,H∩Kχ
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The non-vanishing condition Γ(B, j!γ) 6= 0 imposes a
constraint in each simple root direction

These conditions precisely guarantee: (b, χ) comes from a
unipotent parameter (q, χ)

In this case, j!γ is irreducible and

Γ(B, j!γ) = Indg,Kb,H∩Kχ

= Indg,Kq,L∩K Ind
l,L∩K
l∩b,H∩Kχ

= CohIndgqχ⊗ S(LR)
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Nice feature of this classification: K -structure is ‘visible’

Kostant: S 'K C[N ∩ p]

Blattner: gives K -structure of cohomological induction

Combined: we get nice formulas for K-types of
Unipa(Oprin) which are computable using Borel-Weil-Bott
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