Symmetric Tensor Categories and New Constructions of Exceptional Simple Lie Superalgebras

Arun Kannan (MIT)

October 28, 2022

Infinite-Dimensional Algebra Seminar

Goals of this talk

Part 1: Explain some basic notions about symmetric tensor categories

Goals of this talk

- Part 1: Explain some basic notions about symmetric tensor categories
- Part 2: Given an application to constructing exceptional simple Lie superalgebras

Goals of this talk

- Part 1: Explain some basic notions about symmetric tensor categories
- Part 2: Given an application to constructing exceptional simple Lie superalgebras
- Part 3: Open problems

Part 1

Modern Representation Theory

• The modern view of representation theory: study the category of representations, not just individual representations

Modern Representation Theory

- The modern view of representation theory: study the category of representations, not just individual representations
- Example: Rep *G*, the finite-dimensional representations of a group.

Modern Representation Theory

- The modern view of representation theory: study the category of representations, not just individual representations
- Example: Rep *G*, the finite-dimensional representations of a group.
- The properties of Rep G can be summarized by saying it is a symmetric tensor category or STC. STCs are a home to do commutative algebra, Lie theory, algebraic geometry, etc.

STCs abstract the properties of Rep *G*. What properties?:

1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)

- 1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)
- 2. Has finite direct sums, kernels, cokernels, images, etc (abelian category)

- 1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)
- 2. Has finite direct sums, kernels, cokernels, images, etc (abelian category)
- 3. Objects have finite length as in a composition series and hom spaces are finite-dimensional (locally finite)

- 1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)
- 2. Has finite direct sums, kernels, cokernels, images, etc (abelian category)
- 3. Objects have finite length as in a composition series and hom spaces are finite-dimensional (locally finite)
- 4. Has dual objects (rigidity)

- 1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)
- 2. Has finite direct sums, kernels, cokernels, images, etc (abelian category)
- 3. Objects have finite length as in a composition series and hom spaces are finite-dimensional (locally finite)
- 4. Has dual objects (rigidity)
- 5. Has a tensor product and a unit object 1 w.r.t tensor product, the trivial representation (monoidal structure)

- 1. Hom sets are \mathbb{K} -vector spaces and have bilinear composition of morphisms (\mathbb{K} -linear)
- 2. Has finite direct sums, kernels, cokernels, images, etc (abelian category)
- 3. Objects have finite length as in a composition series and hom spaces are finite-dimensional (locally finite)
- 4. Has dual objects (rigidity)
- 5. Has a tensor product and a unit object 1 w.r.t tensor product, the trivial representation (monoidal structure)
- 6. Has a natural isomorphism $c_{V,W}:V\otimes W\to W\otimes V$ that squares to identity (symmetric structure), called the **braiding**.

A symmetric tensor category is a \mathbb{K} -linear, abelian, locally finite rigid, symmetric monoidal category such that $\operatorname{End}(\mathbb{1}) = \mathbb{K}$ and \otimes is bilinear on morphisms. We will denote the braiding as c.

• The category $\mathsf{Vec}_\mathbb{K}$ of finite-dimensional vector spaces over \mathbb{K} is an STC with braiding $c_{V,W}:V\otimes W\to W\otimes V$ given by $v\otimes w\mapsto w\otimes v$. The unit object $\mathbb{1}$ is \mathbb{K} .

- The category $\mathsf{Vec}_\mathbb{K}$ of finite-dimensional vector spaces over \mathbb{K} is an STC with braiding $c_{V,W}:V\otimes W\to W\otimes V$ given by $v\otimes w\mapsto w\otimes v$. The unit object $\mathbb{1}$ is \mathbb{K} .
- $Vec_{\mathbb{K}} = Rep_{\mathbb{K}} E$, where E is the trivial group.

- The category $\mathsf{Vec}_\mathbb{K}$ of finite-dimensional vector spaces over \mathbb{K} is an STC with braiding $c_{V,W}:V\otimes W\to W\otimes V$ given by $v\otimes w\mapsto w\otimes v$. The unit object $\mathbb{1}$ is \mathbb{K} .
- $Vec_{\mathbb{K}} = Rep_{\mathbb{K}} E$, where E is the trivial group.
- Can generalize this. The category of supervector spaces $sVec_{\mathbb{K}}$ is the category of $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces and morphisms preserving the grading (char $\mathbb{K} \neq 2$).

- The category $\mathsf{Vec}_\mathbb{K}$ of finite-dimensional vector spaces over \mathbb{K} is an STC with braiding $c_{V,W}:V\otimes W\to W\otimes V$ given by $v\otimes w\mapsto w\otimes v$. The unit object $\mathbb{1}$ is \mathbb{K} .
- $Vec_{\mathbb{K}} = Rep_{\mathbb{K}} E$, where E is the trivial group.
- Can generalize this. The category of supervector spaces $sVec_{\mathbb{K}}$ is the category of $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces and morphisms preserving the grading (char $\mathbb{K} \neq 2$).
- It is an STC. The braiding $c_{V,W}:V\otimes W\to W\otimes V$ is given by $v\otimes w\mapsto (-1)^{|v||w|}w\otimes v$ (on homogeneous elements).

• Let's come up with a larger class of examples.

- Let's come up with a larger class of examples.
- Recall that a commutative algebra A is a vector space with multiplication and a unit object satisfying some axioms.

- Let's come up with a larger class of examples.
- Recall that a commutative algebra A is a vector space with multiplication and a unit object satisfying some axioms.
- Can phrase this categorically: A is an object in $\text{Vec}_{\mathbb{K}}$ with two maps $\mu:A\otimes A\to A$ and $\eta:\mathbb{K}\to A$ satisfying some axioms. For instance, the following diagrams commute (associativity and commutativity):

Commutative algebras form a subcategory CommAlg.

An affine group scheme G is a representable functor $\operatorname{Hom}(\mathcal{O}(G),\cdot)$ from **CommAlg** to **Set** that factors through **Grp**.

Important Remark: Can extend this definition to any symmetric tensor category! Correspondence with Hopf algebras goes through in totality.

 The affine group scheme GL_n assigns to any commutative algebra A the group of n × n invertible matrices w/ entries in A. It is represented by

$$\mathcal{O}(GL_n) = \mathbb{K}[\{x_{ij}\}_{i,j=1}^n, t]/(1-t\cdot \det)$$

 The affine group scheme GL_n assigns to any commutative algebra A the group of n × n invertible matrices w/ entries in A. It is represented by

$$\mathcal{O}(GL_n) = \mathbb{K}[\{x_{ij}\}_{i,j=1}^n, t]/(1 - t \cdot \det)$$

 For affine group scheme G, can define representation category Rep G of that affine group scheme (comodules over coordinate ring). This is an STC.

 The affine group scheme GL_n assigns to any commutative algebra A the group of n × n invertible matrices w/ entries in A. It is represented by

$$\mathcal{O}(GL_n) = \mathbb{K}[\{x_{ij}\}_{i,j=1}^n, t]/(1 - t \cdot \det)$$

- For affine group scheme G, can define representation category Rep G of that affine group scheme (comodules over coordinate ring). This is an STC.
- Representation categories of affine group schemes generalize representation categories of groups, Lie algebras, etc by process of taking matrix coefficients.

 The affine group scheme GL_n assigns to any commutative algebra A the group of n × n invertible matrices w/ entries in A. It is represented by

$$\mathcal{O}(GL_n) = \mathbb{K}[\{x_{ij}\}_{i,j=1}^n, t]/(1 - t \cdot \det)$$

- For affine group scheme G, can define representation category Rep G of that affine group scheme (comodules over coordinate ring). This is an STC.
- Representation categories of affine group schemes generalize representation categories of groups, Lie algebras, etc by process of taking matrix coefficients.
- Can do the same definitions but with commutative superalgebras to get affine supergroup schemes.

 Question: are all STCs just at the end of the day representation categories of affine supergroup schemes?

- Question: are all STCs just at the end of the day representation categories of affine supergroup schemes?
- In characteristic 0, if we assume *moderate growth*, then yes (Deligne's theorem). Namely, have fiber functor $F:\mathcal{C}\to s\mathrm{Vec}_{\mathbb{K}}$. By super Tannakian reconstruction, $Aut_{\otimes}(F)$ recovers the supergroup scheme.

- Question: are all STCs just at the end of the day representation categories of affine supergroup schemes?
- In characteristic 0, if we assume *moderate growth*, then yes (Deligne's theorem). Namely, have fiber functor $F:\mathcal{C}\to s\mathrm{Vec}_{\mathbb{K}}$. By super Tannakian reconstruction, $Aut_{\otimes}(F)$ recovers the supergroup scheme.
- Otherwise, in characteristic zero, no: counterexamples include
 Deligne categories and STCs arising from oligomorphic groups.

- Question: are all STCs just at the end of the day representation categories of affine supergroup schemes?
- In characteristic 0, if we assume *moderate growth*, then yes (Deligne's theorem). Namely, have fiber functor $F:\mathcal{C}\to \operatorname{sVec}_{\mathbb{K}}$. By super Tannakian reconstruction, $\operatorname{Aut}_{\otimes}(F)$ recovers the supergroup scheme.
- Otherwise, in characteristic zero, no: counterexamples include
 Deligne categories and STCs arising from oligomorphic groups.
- In characteristic p > 0, there are STCs with moderate growth that don't fiber over $sVec_{\mathbb{K}}$, like the Verlinde category Ver_p .

- Question: are all STCs just at the end of the day representation categories of affine supergroup schemes?
- In characteristic 0, if we assume *moderate growth*, then yes (Deligne's theorem). Namely, have fiber functor $F:\mathcal{C}\to \operatorname{sVec}_{\mathbb{K}}$. By super Tannakian reconstruction, $\operatorname{Aut}_{\otimes}(F)$ recovers the supergroup scheme.
- Otherwise, in characteristic zero, no: counterexamples include
 Deligne categories and STCs arising from oligomorphic groups.
- In characteristic p > 0, there are STCs with moderate growth that don't fiber over $sVec_{\mathbb{K}}$, like the Verlinde category Ver_p .
- This gives us new kinds of algebra (and Lie theory, algebraic geometry, etc), one without vector spaces.

Part 2

The Elduque and Cunha Lie Superalgebras

 In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)

The Elduque and Cunha Lie Superalgebras

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the Elduque Supermagic Square, a super analog of the Freudenthal Magic Square

The Elduque and Cunha Lie Superalgebras

- In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha constructed new exceptional simple Lie superalgebras (in characteristic 3)
- Constructed using the Elduque Supermagic Square, a super analog of the Freudenthal Magic Square
- Associates a Lie superalgebra to two unital composition algebras.

The Result, informally stated

Theorem (K). These Lie superalgebras (and many others) can be constructed using STCs. In particular, they are constructed by *semisimplifying* an exceptional Lie algebra equipped with a nilpotent derivation of degree at most 3.

Lie Algebras in STCs

• An operadic Lie algebra in an STC $\mathcal C$ is an object $\mathfrak g \in \mathcal C$ and a morphism $B:\mathfrak g \otimes \mathfrak g \to \mathfrak g$ such that

$$B \circ (1_{\mathfrak{g} \otimes \mathfrak{g}} + c_{\mathfrak{g},\mathfrak{g}}) = 0;$$

$$B \circ (B \otimes 1_{\mathfrak{g}}) \circ (1_{\mathfrak{g} \otimes 3} + (123)_{\mathfrak{g} \otimes 3} + (132)_{\mathfrak{g} \otimes 3}) = 0.$$

Lie Algebras in STCs

• An operadic Lie algebra in an STC $\mathcal C$ is an object $\mathfrak g \in \mathcal C$ and a morphism $B:\mathfrak g \otimes \mathfrak g \to \mathfrak g$ such that

$$B\circ (1_{\mathfrak{g}\otimes\mathfrak{g}}+c_{\mathfrak{g},\mathfrak{g}})=0;$$

$$B\circ (B\otimes 1_{\mathfrak{g}})\circ (1_{\mathfrak{g}^{\otimes 3}}+(123)_{\mathfrak{g}^{\otimes 3}}+(132)_{\mathfrak{g}^{\otimes 3}})=0.$$

• A Lie algebra as you know it is an operadic Lie algebra in $\operatorname{Vec}_{\mathbb{K}}$ (char $\mathbb{K} \neq 2$). A Lie superalgebra as you know it is an operadic Lie algebra in $\operatorname{sVec}_{\mathbb{K}}$ (char $\mathbb{K} \neq 2,3$)

Lie Algebras in STCs

• An operadic Lie algebra in an STC $\mathcal C$ is an object $\mathfrak g \in \mathcal C$ and a morphism $B:\mathfrak g \otimes \mathfrak g \to \mathfrak g$ such that

$$B\circ (1_{\mathfrak{g}\otimes\mathfrak{g}}+c_{\mathfrak{g},\mathfrak{g}})=0;$$

$$B\circ (B\otimes 1_{\mathfrak{g}})\circ (1_{\mathfrak{g}^{\otimes 3}}+(123)_{\mathfrak{g}^{\otimes 3}}+(132)_{\mathfrak{g}^{\otimes 3}})=0.$$

- A Lie algebra as you know it is an operadic Lie algebra in $\operatorname{Vec}_{\mathbb K}$ (char $\mathbb K \neq 2$). A Lie superalgebra as you know it is an operadic Lie algebra in $\operatorname{sVec}_{\mathbb K}$ (char $\mathbb K \neq 2,3$)
- In general might not satisfy PBW theorem but not a problem for us.

Another Example

• Let α_p be the kernel of Frobenius endomorphism on \mathbb{G}_a over algebraically closed field \mathbb{K} of characteristic p>0. Rep $\alpha_p\cong \operatorname{Rep}\mathbb{K}[t]/(t^p)$ is an STC.

Another Example

- Let α_p be the kernel of Frobenius endomorphism on \mathbb{G}_a over algebraically closed field \mathbb{K} of characteristic p>0. Rep $\alpha_p\cong \operatorname{Rep}\mathbb{K}[t]/(t^p)$ is an STC.
- Rep α_p is not semisimple. Indecomposable objects are $J_n = \mathbb{K}^n$ for $1 \le n \le p$, where t acts as nilpotent Jordan block of size n:

$$t \mapsto \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Another Example

- Let α_p be the kernel of Frobenius endomorphism on \mathbb{G}_a over algebraically closed field \mathbb{K} of characteristic p>0. Rep $\alpha_p\cong \operatorname{Rep}\mathbb{K}[t]/(t^p)$ is an STC.
- Rep α_p is not semisimple. Indecomposable objects are $J_n = \mathbb{K}^n$ for $1 \le n \le p$, where t acts as nilpotent Jordan block of size n:

$$t \mapsto \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 A Lie algebra in Rep α_p is an ordinary Lie algebra equipped with a nilpotent derivation d of degree at most p.

• For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .

- For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .
- The semisimplification $\overline{\mathcal{C}}$ of \mathcal{C} is defined as \mathcal{C}/\mathcal{N} .

- For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .
- The semisimplification $\overline{\mathcal{C}}$ of \mathcal{C} is defined as \mathcal{C}/\mathcal{N} .
- Have symmetric monoidal functor $\mathcal{C} \to \overline{\mathcal{C}}$ called semisimplification functor. Meaning $\overline{\mathcal{C}}$ is a semisimple STC (a, \otimes, c) are defined as images under semsimplification functor).

- For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .
- The semisimplification $\overline{\mathcal{C}}$ of \mathcal{C} is defined as \mathcal{C}/\mathcal{N} .
- Have symmetric monoidal functor $\mathcal{C} \to \overline{\mathcal{C}}$ called semisimplification functor. Meaning $\overline{\mathcal{C}}$ is a semisimple STC (a, \otimes, c) are defined as images under semsimplification functor).
- The image of an operadic Lie algebra under semisimplification is an operadic Lie algebra.

- For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .
- The semisimplification $\overline{\mathcal{C}}$ of \mathcal{C} is defined as \mathcal{C}/\mathcal{N} .
- Have symmetric monoidal functor $\mathcal{C} \to \overline{\mathcal{C}}$ called semisimplification functor. Meaning $\overline{\mathcal{C}}$ is a semisimple STC (a, \otimes, c) are defined as images under semsimplification functor).
- The image of an operadic Lie algebra under semisimplification is an operadic Lie algebra.
- Informally, $\overline{\mathcal{C}}$ is obtained by declaring all indecomposables to be simple or if they have categorical dimension 0, zero.

- For $f \in \operatorname{Hom}_{\mathcal{C}}(X,Y)$, say f is negligible if $\operatorname{tr}(f \circ g) = 0$ for all $g \in \operatorname{Hom}_{\mathcal{C}}(Y,X)$. Collection of negligible morphisms form a tensor ideal \mathcal{N} .
- The semisimplification $\overline{\mathcal{C}}$ of \mathcal{C} is defined as \mathcal{C}/\mathcal{N} .
- Have symmetric monoidal functor $\mathcal{C} \to \overline{\mathcal{C}}$ called semisimplification functor. Meaning $\overline{\mathcal{C}}$ is a semisimple STC (a, \otimes, c) are defined as images under semsimplification functor).
- The image of an operadic Lie algebra under semisimplification is an operadic Lie algebra.
- Informally, $\overline{\mathcal{C}}$ is obtained by declaring all indecomposables to be simple or if they have categorical dimension 0, zero.
- The Verlinde category Ver_p is by definition the semisimplification $\overline{\operatorname{Rep}} \alpha_p$ of $\operatorname{Rep} \alpha_p$.

Properties of Ver_p

• Simple objects: L_1, \ldots, L_{p-1} , images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as dim $J_p = p = 0$.

Properties of Verp

- Simple objects: L_1, \ldots, L_{p-1} , images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as dim $J_p = p = 0$.
- Tensor product rule in general is given by the so called "truncated Clebsch-Gordan rule":

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

Properties of Ver_p

- Simple objects: L_1, \ldots, L_{p-1} , images of J_1, \ldots, J_{p-1} (resp.). The indecomposable J_p goes to zero as dim $J_p = p = 0$.
- Tensor product rule in general is given by the so called "truncated Clebsch-Gordan rule":

$$L_n \otimes L_m = \bigoplus_{i=1}^{\min(n,m,p-n,p-m)} L_{|n-m|+2i-1}.$$

 Theorem of Ostrik says that all semisimple STCs fiber over Ver_p.

Properties of Ver_p (cont.)

Proposition: Ver_p is not the representation category of an affine supergroup scheme in characteristics p > 3.

Proof.

For p = 5,

$$L_3 \otimes L_3 = L_1 \oplus L_3 \implies t^2 = 1 + t$$

So $t = \dim L_3$ is not integral. Similar idea for p > 5.

Properties of Ver_p (cont.)

Proposition: $sVec_{\mathbb{K}}$ is a full subcategory of Ver_p .

Proof.

Consider the full subcategory tensor generated by L_{p-1} . L_{p-1} has categorical dimension -1 with $L_{p-1}\otimes L_{p-1}=L_1$ and $S^2(L_{p-1})=0$. Hence we get the category of supervector spaces.

Upshot: Going back to part 1, any commutative algebra, Lie theory, or algebraic geometry done in Ver_p is new but also generalizes known phenomena. Also, $\operatorname{Ver}_3 = \operatorname{sVec}_{\mathbb{K}}$.

Key idea

The semisimplification of an operadic Lie algebra (\mathfrak{g},B) in Rep α_p is an operadic Lie algebra $(\overline{\mathfrak{g}},\overline{B})$ in Ver $_p$. In particular, when p=3, we get a Lie superalgebra (that might not satisfy [x,[x,x]]=0 for odd x, but not a concern for us).

 \bullet Consider \mathfrak{gl}_6 in characteristic 3 with usual basis $e_{ij}.$

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3 = 0 \implies (ad \, e_{56})^3 = 0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3 = 0 \implies (ad \, e_{56})^3 = 0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

• It decomposes as $\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3)$:

- Consider \mathfrak{gl}_6 in characteristic 3 with usual basis e_{ij} .
- Since

$$e_{56}^3 = 0 \implies (ad \, e_{56})^3 = 0$$

 $(\mathfrak{gl}_6, \operatorname{ad} e_{56})$ is a Lie algebra in Rep α_3 .

• It decomposes as $\mathfrak{gl}_6 = 16J_1 \oplus 8J_2 \oplus (J_1 \oplus J_3)$:

• Therefore, its semisimplification is $\mathfrak{gl}(4|1) = 16L_1 \oplus 8L_2 \oplus L_1$.

More semisimplifications:

• In any STC, define $\mathfrak{gl}(V) = V \otimes V^*$, with Lie bracket B

$$B = 1_V \otimes \mathsf{ev}_{V^*,V} \otimes 1_{V^*} \circ (1_{\mathfrak{gl}(V) \otimes \mathfrak{gl}(V)} - c_{\mathfrak{gl}(V),\mathfrak{gl}(V)})$$

Its semisimplification is $\mathfrak{gl}(\overline{V})$.

More semisimplifications:

• In any STC, define $\mathfrak{gl}(V) = V \otimes V^*$, with Lie bracket B

$$B = 1_V \otimes \mathsf{ev}_{V^*,V} \otimes 1_{V^*} \circ \left(1_{\mathfrak{gl}(V) \otimes \mathfrak{gl}(V)} - c_{\mathfrak{gl}(V),\mathfrak{gl}(V)} \right)$$

Its semisimplification is $\mathfrak{gl}(\overline{V})$.

 Similar statement for Lie algebra that preserves a non-degenerate bilinear form (the semisimplification preserves the semisimplification of the form).

The Result, informally stated, again

Theorem (K). The Elduque and Cunha Lie superalgebras (and many others) can be constructed as the *semisimplification* of an exceptional Lie algebra equipped with a nilpotent derivation of degree at most 3.

Kac-Moody Lie Superalgebra

The setup: A ∈ Mat_n(Z) such that diagonal entries are either 2 or 0; if a_{ii} = 2, declare i to be an even index, if a_{ii} = 0, declare i to be an odd index. Define the Lie superalgebra g̃(A) over K to be the free Lie superalgebra on generators {e_i, f_i, h_i}_{1≤i≤n} subject to the relations:

$$[e_i, f_j] = \delta_{ij}h_i; \quad [h, e_j] = a_{ij}e_j; \quad [h, f_j] = -a_{ij}f_j; \quad [h_i, h_j] = 0,$$

and let $\mathfrak{g}(A)$ be $\tilde{\mathfrak{g}}(A)/I$, where I is the maximal ideal trivially intersecting $\mathfrak{h} = \mathbb{K}h_1 \oplus \cdots \oplus \mathbb{K}h_n$.

Kac-Moody Lie Superalgebra

The setup: A ∈ Mat_n(Z) such that diagonal entries are either 2 or 0; if a_{ii} = 2, declare i to be an even index, if a_{ii} = 0, declare i to be an odd index. Define the Lie superalgebra g̃(A) over K to be the free Lie superalgebra on generators {e_i, f_i, h_i}_{1≤i≤n} subject to the relations:

$$[e_i, f_j] = \delta_{ij} h_i;$$
 $[h, e_j] = a_{ij} e_j;$ $[h, f_j] = -a_{ij} f_j;$ $[h_i, h_j] = 0,$
and let $\mathfrak{g}(A)$ be $\tilde{\mathfrak{g}}(A)/I$, where I is the maximal ideal trivially intersecting $\mathfrak{h} = \mathbb{K} h_1 \oplus \cdots \oplus \mathbb{K} h_n$.

 The Elduque and Cunha Lie superalgebras are of this form (or "related").

The 133-dimensional simple exceptional Lie algebra e_7 can be written $e_7 = \mathfrak{g}(\hat{A})$, where

$$\hat{A} = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}.$$

The generator e_1 is ad-nilpotent of degree 3, so can view e_7 as an object in Rep α_3 w.r.t. ad e_1 .

Its semisimplification is a finite-dimensional simple exceptional Eldque and Cunha Lie superalgebra $\mathfrak{g}(A)$ of superdimension (66|32), where

$$A = \begin{pmatrix} 2 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix};$$

Idea: the copy of J_2 spanned by e_1 and $[e_1, e_3]$ in e_7 became an odd generator (resp. f) in the semisimplification.

 Similarly, most of the other exceptional Lie superalgebras can be constructed this way by choosing a suitable nilpotent element (the sum of certain Chevalley generators), based on comparing Cartan matrices.

- Similarly, most of the other exceptional Lie superalgebras can be constructed this way by choosing a suitable nilpotent element (the sum of certain Chevalley generators), based on comparing Cartan matrices.
- A few of them, however, cannot be determined by looking at Cartan matrix alone; these must be manually determined. For instance, there is the Elduque Lie superalgebra in characteristic 5. This can be constructed by semisimplifying ε₈ with respect to e₂ + e₃ + e₄.

Summary of Results

Lie algebra	Nilpotent element	Lie superalgebra
$\overline{\mathfrak{br}_3}$	e_1, e_2	$\mathfrak{brj}_{2;3}$
f 4	e_1 e_4 $e_1 + e_4$	see (\star) below $\mathfrak{g}(1,6)$ see (\star) below
e ₆ ⁽¹⁾	e_1, e_2, e_6 $e_1 + e_2, e_2 + e_6, e_1 + e_6$ $e_1 + e_2 + e_6$	$\mathfrak{g}(2,6)^{(1)} \ \mathfrak{g}(3,3)^{(1)} \ \mathfrak{g}(2,3)^{(1)}$
e ₇	e_1, e_2, e_7 $e_1 + e_2, e_2 + e_7, e_1 + e_7$ $e_1 + e_2 + e_7$ $e_2 + e_5 + e_7$ $e_1 + e_2 + e_5 + e_7$	$ g(4,6) el(5;3) g(4,3) f_4; see (**) below g(1,6)$
e ₈	$\begin{array}{c} e_1, e_2, e_8 \\ e_1 + e_2, e_2 + e_8, e_1 + e_8 \\ e_1 + e_2 + e_8 \\ e_1 + e_2 + e_6 + e_8 \end{array}$	g(8,6) g(6,6) g(8,3) g(3,6)

Follow-Up Problems

 Which nilpotent derivations give the same semisimplifications and why?

Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.

Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in $\operatorname{Rep} \alpha_p$?

Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in Rep α_p ?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in Ver_p?

Follow-Up Problems

- Which nilpotent derivations give the same semisimplifications and why?
- Study the representation theory of these exceptional Lie superalgebras by semisimplifying representations of the exceptional Lie algebras they come from.
- What is the notion of a Kac-Moody Lie algebra in the Verlinde category? Given such a notion, how does it relate to semisimplifying a Kac-Moody Lie algebra in Rep α_p ?
- What other simple Lie superalgebras can be obtained this way? What about simple Lie algebras in Ver_p?
- Semisimplify other algebraic objects, like affine group schemes. What happens?

Part 3

ullet Finite-Generation of Cohomology of Finite Group Schemes for ${\sf Ver}_p$ in characteristic p

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- \bullet Classification of simple algebraic groups and Lie algebras in Ver_{p}

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- \bullet Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X))

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X))
- Deligne's Theorem analog in characteristic p

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X))
- Deligne's Theorem analog in characteristic p
- Schur Duality type statements

- Finite-Generation of Cohomology of Finite Group Schemes for Ver_p in characteristic p
- Polynomial Functors for STCs
- Classification of simple algebraic groups and Lie algebras in Ver_p
- Notions of reductive groups and root systems in Ver_p, and associated representation theory (some progress made for GL(X))
- Deligne's Theorem analog in characteristic p
- Schur Duality type statements
- More generally: what theorems that extend from vector spaces to supervector spaces extend to the Verlinde setting?

References

- [CE07a] Isabel Cunha and Alberto Elduque. "An extended Freudenthal magic square in characteristic 3". In: *Journal of Algebra* 317.2 (2007), pp. 471–509.
- [CE07b] Isabel Cunha and Alberto Elduque. "The extended Freudenthal magic square and Jordan algebras". In: Manuscripta Mathematica 123.3 (2007), pp. 325–351.
- [Eld06] Alberto Elduque. "New simple Lie superalgebras in characteristic 3". In: Journal of Algebra 296.1 (2006), pp. 196–233.
- [Eld07] Alberto Elduque. "Some new simple modular Lie superalgebras". In: *Pacific Journal of Mathematics* 231.2 (2007), pp. 337–359.

Acknowledgements

This presentation is based upon work supported by The National Science Foundation Graduate Research Fellowship Program under Grant No. 1842490 awarded to the author.