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Goals of this talk

• Part 1: Explain some basic notions about symmetric tensor

categories

• Part 2: Given an application to constructing exceptional

simple Lie superalgebras

• Part 3: Open problems
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Modern Representation Theory

• The modern view of representation theory: study the category

of representations, not just individual representations

• Example: RepG , the finite-dimensional representations of a

group.

• The properties of RepG can be summarized by saying it is a

symmetric tensor category or STC. STCs are a home to do

commutative algebra, Lie theory, algebraic geometry, etc.
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What is a symmetric tensor category?

STCs abstract the properties of RepG . What properties?:

1. Hom sets are K-vector spaces and have bilinear composition

of morphisms (K-linear)

2. Has finite direct sums, kernels, cokernels, images, etc (abelian

category)

3. Objects have finite length as in a composition series and hom

spaces are finite-dimensional (locally finite)

4. Has dual objects (rigidity)

5. Has a tensor product and a unit object 1 w.r.t tensor product,

the trivial representation (monoidal structure)

6. Has a natural isomorphism cV ,W : V ⊗W →W ⊗ V that

squares to identity (symmetric structure), called the braiding.
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What is a symmetric tensor category?

A symmetric tensor category is a K-linear, abelian, locally finite

rigid, symmetric monoidal category such that End(1) = K and ⊗
is bilinear on morphisms. We will denote the braiding as c .
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Examples

• The category VecK of finite-dimensional vector spaces over K
is an STC with braiding cV ,W : V ⊗W →W ⊗ V given by

v ⊗ w 7→ w ⊗ v . The unit object 1 is K.

• VecK = RepK E , where E is the trivial group.

• Can generalize this. The category of supervector spaces sVecK

is the category of Z/2Z-graded vector spaces and morphisms

preserving the grading (char K 6= 2).

• It is an STC. The braiding cV ,W : V ⊗W →W ⊗ V is given

by v ⊗ w 7→ (−1)|v ||w |w ⊗ v (on homogeneous elements).
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More Examples from Affine Group Schemes

• Let’s come up with a larger class of examples.

• Recall that a commutative algebra A is a vector space with

multiplication and a unit object satisfying some axioms.

• Can phrase this categorically: A is an object in VecK with two

maps µ : A⊗ A→ A and η : K→ A satisfying some axioms.

For instance, the following diagrams commute (associativity

and commutativity):
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A⊗ A⊗ A A⊗ A

A⊗ A A

µ⊗1A

1A⊗µ µ

µ

A⊗ A

A⊗ A A

cA,A µ

µ

Commutative algebras form a subcategory CommAlg.

An affine group scheme G is a representable functor Hom(O(G ), ·)
from CommAlg to Set that factors through Grp.

Important Remark: Can extend this definition to any symmetric

tensor category! Correspondence with Hopf algebras goes through

in totality.
9/34



More Examples from Affine Group Schemes

• The affine group scheme GLn assigns to any commutative

algebra A the group of n × n invertible matrices w/ entries in

A. It is represented by

O(GLn) = K[{xij}ni ,j=1, t]/(1− t · det)

• For affine group scheme G , can define representation category

RepG of that affine group scheme (comodules over

coordinate ring). This is an STC.

• Representation categories of affine group schemes generalize

representation categories of groups, Lie algebras, etc by

process of taking matrix coefficients.

• Can do the same definitions but with commutative

superalgebras to get affine supergroup schemes.
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The Upshot

• Question: are all STCs just at the end of the day

representation categories of affine supergroup schemes?

• In characteristic 0, if we assume moderate growth, then yes

(Deligne’s theorem). Namely, have fiber functor

F : C → sVecK. By super Tannakian reconstruction, Aut⊗(F )

recovers the supergroup scheme.

• Otherwise, in characteristic zero, no: counterexamples include

Deligne categories and STCs arising from oligomorphic groups.

• In characteristic p > 0, there are STCs with moderate growth

that don’t fiber over sVecK, like the Verlinde category Verp.

• This gives us new kinds of algebra (and Lie theory, algebraic

geometry, etc), one without vector spaces.
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Part 2
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The Elduque and Cunha Lie Superalgebras

• In [Eld06; CE07b; CE07a; Eld07], Elduque and Cunha

constructed new exceptional simple Lie superalgebras (in

characteristic 3)

• Constructed using the Elduque Supermagic Square, a super

analog of the Freudenthal Magic Square

• Associates a Lie superalgebra to two unital composition

algebras.
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The Result, informally stated

Theorem (K). These Lie superalgebras (and many others) can be

constructed using STCs. In particular, they are constructed by

semisimplifying an exceptional Lie algebra equipped with a

nilpotent derivation of degree at most 3.
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Lie Algebras in STCs

• An operadic Lie algebra in an STC C is an object g ∈ C and a

morphism B : g⊗ g→ g such that

B ◦ (1g⊗g + cg,g) = 0;

B ◦ (B ⊗ 1g) ◦ (1g⊗3 + (123)g⊗3 + (132)g⊗3) = 0.

• A Lie algebra as you know it is an operadic Lie algebra in

VecK (char K 6= 2). A Lie superalgebra as you know it is an

operadic Lie algebra in sVecK (char K 6= 2, 3)

• In general might not satisfy PBW theorem but not a problem

for us.
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Another Example

• Let αp be the kernel of Frobenius endomorphism on Ga over

algebraically closed field K of characteristic p > 0.

Repαp
∼= RepK[t]/(tp) is an STC.

• Repαp is not semisimple. Indecomposable objects are

Jn = Kn for 1 ≤ n ≤ p, where t acts as nilpotent Jordan

block of size n:

t 7→


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1

0 0 0 0 0


• A Lie algebra in Repαp is an ordinary Lie algebra equipped

with a nilpotent derivation d of degree at most p.
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Semisimplification

• For f ∈ HomC(X ,Y ), say f is negligible if tr(f ◦ g) = 0 for all

g ∈ HomC(Y ,X ). Collection of negligible morphisms form a

tensor ideal N .

• The semisimplification C of C is defined as C/N .

• Have symmetric monoidal functor C → C called

semisimplification functor. Meaning C is a semisimple STC

(a,⊗, c are defined as images under semsimplification

functor).

• The image of an operadic Lie algebra under semisimplification

is an operadic Lie algebra.

• Informally, C is obtained by declaring all indecomposables to

be simple or if they have categorical dimension 0, zero.

• The Verlinde category Verp is by definition the

semisimplification Repαp of Repαp.
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Properties of Verp

• Simple objects: L1, . . . , Lp−1, images of J1, . . . , Jp−1 (resp.).

The indecomposable Jp goes to zero as dim Jp = p = 0.

• Tensor product rule in general is given by the so called

”truncated Clebsch-Gordan rule”:

Ln ⊗ Lm =

min(n,m,p−n,p−m)⊕
i=1

L|n−m|+2i−1.

• Theorem of Ostrik says that all semisimple STCs fiber over

Verp.

18/34
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Ln ⊗ Lm =

min(n,m,p−n,p−m)⊕
i=1

L|n−m|+2i−1.

• Theorem of Ostrik says that all semisimple STCs fiber over

Verp.
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Properties of Verp (cont.)

Proposition: Verp is not the representation category of an affine

supergroup scheme in characteristics p > 3.

Proof.
For p = 5,

L3 ⊗ L3 = L1 ⊕ L3 =⇒ t2 = 1 + t

So t = dim L3 is not integral. Similar idea for p > 5.
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Properties of Verp (cont.)

Proposition: sVecK is a full subcategory of Verp.

Proof.
Consider the full subcategory tensor generated by Lp−1. Lp−1 has

categorical dimension −1 with Lp−1 ⊗ Lp−1 = L1 and

S2(Lp−1) = 0. Hence we get the category of supervector

spaces.

Upshot: Going back to part 1, any commutative algebra, Lie

theory, or algebraic geometry done in Verp is new but also

generalizes known phenomena. Also, Ver3 = sVecK.
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Key idea

The semisimplification of an operadic Lie algebra (g,B) in Repαp

is an operadic Lie algebra (g,B) in Verp. In particular, when

p = 3, we get a Lie superalgebra (that might not satisfy

[x , [x , x ]] = 0 for odd x , but not a concern for us).
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Example: gl6

• Consider gl6 in characteristic 3 with usual basis eij .

• Since

e3
56 = 0 =⇒ (ad e56)3 = 0

(gl6, ad e56) is a Lie algebra in Repα3.

• It decomposes as gl6 = 16J1 ⊕ 8J2 ⊕ (J1 ⊕ J3):

• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •


• Therefore, its semisimplification is gl(4|1) = 16L1 ⊕ 8L2 ⊕ L1.
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More semisimplifications:

• In any STC, define gl(V ) = V ⊗ V ∗, with Lie bracket B

B = 1V ⊗ evV ∗,V ⊗ 1V ∗ ◦ (1gl(V )⊗gl(V ) − cgl(V ),gl(V ))

Its semisimplification is gl(V ).

• Similar statement for Lie algebra that preserves a

non-degenerate bilinear form (the semisimplification preserves

the semisimplification of the form).
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The Result, informally stated, again

Theorem (K). The Elduque and Cunha Lie superalgebras (and

many others) can be constructed as the semisimplification of an

exceptional Lie algebra equipped with a nilpotent derivation of

degree at most 3.
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Kac-Moody Lie Superalgebra

• The setup: A ∈ Matn(Z) such that diagonal entries are either

2 or 0; if aii = 2, declare i to be an even index, if aii = 0,

declare i to be an odd index. Define the Lie superalgebra g̃(A)

over K to be the free Lie superalgebra on generators

{ei , fi , hi}1≤i≤n subject to the relations:

[ei , fj ] = δijhi ; [h, ej ] = aijej ; [h, fj ] = −aij fj ; [hi , hj ] = 0,

and let g(A) be g̃(A)/I , where I is the maximal ideal trivially

intersecting h = Kh1 ⊕ · · · ⊕Khn.

• The Elduque and Cunha Lie superalgebras are of this form (or

“related”).
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Semisimplification in Action

The 133-dimensional simple exceptional Lie algebra e7 can be

written e7 = g(Â), where

Â =



2 0 −1 0 0 0 0

0 2 0 −1 0 0 0

−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2


.

The generator e1 is ad-nilpotent of degree 3, so can view e7 as an

object in Repα3 w.r.t. ad e1.
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Semisimplification in Action

Its semisimplification is a finite-dimensional simple exceptional

Eldque and Cunha Lie superalgebra g(A) of superdimension

(66|32), where

A =



2 0 −1 0 0 0

0 0 −1 0 0 0

−1 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2


;

Idea: the copy of J2 spanned by e1 and [e1, e3] in e7 became an

odd generator (resp. f ) in the semisimplification.
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Semisimplification in Action

• Similarly, most of the other exceptional Lie superalgebras can

be constructed this way by choosing a suitable nilpotent

element (the sum of certain Chevalley generators), based on

comparing Cartan matrices.

• A few of them, however, cannot be determined by looking at

Cartan matrix alone; these must be manually determined. For

instance, there is the Elduque Lie superalgebra in

characteristic 5. This can be constructed by semisimplifying

e8 with respect to e2 + e3 + e4.
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Summary of Results
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Follow-Up Problems

• Which nilpotent derivations give the same semisimplifications

and why?

• Study the representation theory of these exceptional Lie

superalgebras by semisimplifying representations of the

exceptional Lie algebras they come from.

• What is the notion of a Kac-Moody Lie algebra in the

Verlinde category? Given such a notion, how does it relate to

semisimplifying a Kac-Moody Lie algebra in Repαp?

• What other simple Lie superalgebras can be obtained this

way? What about simple Lie algebras in Verp?

• Semisimplify other algebraic objects, like affine group

schemes. What happens?
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Part 3
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Some Open Problems

• Finite-Generation of Cohomology of Finite Group Schemes for

Verp in characteristic p

• Polynomial Functors for STCs

• Classification of simple algebraic groups and Lie algebras in

Verp

• Notions of reductive groups and root systems in Verp, and

associated representation theory (some progress made for

GL(X ))

• Deligne’s Theorem analog in characteristic p

• Schur Duality type statements

• More generally: what theorems that extend from vector

spaces to supervector spaces extend to the Verlinde setting?
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