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Modern Representation Theory

e The modern view of representation theory: study the category
of representations, not just individual representations

e Example: Rep G, the finite-dimensional representations of a
group.

e The properties of Rep G can be summarized by saying it is a
symmetric tensor category or STC. STCs are a home to do
commutative algebra, Lie theory, algebraic geometry, etc.
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What is a symmetric tensor category?

STCs abstract the properties of Rep G. What properties?:

1.

Hom sets are K-vector spaces and have bilinear composition
of morphisms (K-linear)

Has finite direct sums, kernels, cokernels, images, etc (abelian
category)

Objects have finite length as in a composition series and hom
spaces are finite-dimensional (locally finite)

Has dual objects (rigidity)

5. Has a tensor product and a unit object 1 w.r.t tensor product,

the trivial representation (monoidal structure)

Has a natural isomorphism cy v : V@ W — W ® V that
squares to identity (symmetric structure), called the braiding.
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What is a symmetric tensor category?

A symmetric tensor category is a K-linear, abelian, locally finite
rigid, symmetric monoidal category such that End(1) = K and ®
is bilinear on morphisms. We will denote the braiding as c.
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Examples
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Examples

e The category Veck of finite-dimensional vector spaces over K
is an STC with braiding cy w : V& W — W ® V given by
v®wi— w® v. The unit object 1 is K.

e Veckg = Repg E, where E is the trivial group.

e Can generalize this. The category of supervector spaces sVecg
is the category of Z/27Z-graded vector spaces and morphisms
preserving the grading (char K # 2).

e Itisan STC. The braiding cyw : VO W — W ® V is given
by v@ w i (—=1)VI"lw @ v (on homogeneous elements).
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More Examples from Affine Group Schemes

e Let's come up with a larger class of examples.
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More Examples from Affine Group Schemes

e Let's come up with a larger class of examples.

e Recall that a commutative algebra A is a vector space with
multiplication and a unit object satisfying some axioms.

e Can phrase this categorically: A is an object in Veck with two
maps ;4 : A® A — A and n: K — A satisfying some axioms.
For instance, the following diagrams commute (associativity
and commutativity):
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ADARA M Ag A
lh\@u JM
AA—" A

ARA

[N

AA—E L A
Commutative algebras form a subcategory CommAlg.

An affine group scheme G is a representable functor Hom(O(G), -)
from CommAlg to Set that factors through Grp.

Important Remark: Can extend this definition to any symmetric
tensor category! Correspondence with Hopf algebras goes through
in totality.
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More Examples from Affine Group Schemes

e The affine group scheme GL, assigns to any commutative
algebra A the group of n x n invertible matrices w/ entries in
A. It is represented by

O(GLn) = K[{x} s, t]/(1 — t - det)
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e The affine group scheme GL, assigns to any commutative
algebra A the group of n x n invertible matrices w/ entries in
A. It is represented by

O(GLy) = K[{xj}7j=1,t]/(1 — t - det)

e For affine group scheme G, can define representation category
Rep G of that affine group scheme (comodules over
coordinate ring). This is an STC.

e Representation categories of affine group schemes generalize
representation categories of groups, Lie algebras, etc by
process of taking matrix coefficients.

e Can do the same definitions but with commutative

superalgebras to get affine supergroup schemes.
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The Upshot

Question: are all STCs just at the end of the day
representation categories of affine supergroup schemes?

In characteristic 0, if we assume moderate growth, then yes
(Deligne's theorem). Namely, have fiber functor

F : C — sVecg. By super Tannakian reconstruction, Autg(F)
recovers the supergroup scheme.

Otherwise, in characteristic zero, no: counterexamples include
Deligne categories and STCs arising from oligomorphic groups.
In characteristic p > 0, there are STCs with moderate growth
that don't fiber over sVecy, like the Verlinde category Ver,,.
This gives us new kinds of algebra (and Lie theory, algebraic
geometry, etc), one without vector spaces.
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The Elduque and Cunha Lie Superalgebras

e In [EId06; CEO7b; CEO7a; EId07], Elduque and Cunha
constructed new exceptional simple Lie superalgebras (in
characteristic 3)
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The Elduque and Cunha Lie Superalgebras

e In [EId06; CEO7b; CEO7a; EId07], Elduque and Cunha
constructed new exceptional simple Lie superalgebras (in
characteristic 3)

e Constructed using the Elduque Supermagic Square, a super
analog of the Freudenthal Magic Square

e Associates a Lie superalgebra to two unital composition
algebras.
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The Result, informally stated

Theorem (K). These Lie superalgebras (and many others) can be
constructed using STCs. In particular, they are constructed by
semisimplifying an exceptional Lie algebra equipped with a
nilpotent derivation of degree at most 3.
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Lie Algebras in STCs

e An operadic Lie algebra in an STC C is an object g € C and a
morphism B : g ® g — g such that

Bo (19@9 + Cg,g) = 0,
B o (B [%9) lg) o (lg®3 + (123)g®3 + (132)9@;3) = 0.
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Lie Algebras in STCs

e An operadic Lie algebra in an STC C is an object g € C and a
morphism B : g ® g — g such that

Bo(lgeg + Gg) = 0;
Bo(B®1,)0 (1ges + (123)4e5 + (132)4e3) = 0.

e A Lie algebra as you know it is an operadic Lie algebra in
Veck (char K # 2). A Lie superalgebra as you know it is an
operadic Lie algebra in sVeck (char K # 2, 3)

e In general might not satisfy PBW theorem but not a problem
for us.
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Another Example

e Let o, be the kernel of Frobenius endomorphism on G, over
algebraically closed field K of characteristic p > 0.
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e Let o, be the kernel of Frobenius endomorphism on G, over
algebraically closed field K of characteristic p > 0.
Rep ap = Rep K[t]/(tP) is an STC.

e Rep a,, is not semisimple. Indecomposable objects are
Jp =K" for 1 < n < p, where t acts as nilpotent Jordan
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Another Example

e Let o, be the kernel of Frobenius endomorphism on G, over
algebraically closed field K of characteristic p > 0.
Rep ap = Rep K[t]/(tP) is an STC.

e Rep a,, is not semisimple. Indecomposable objects are
Jp =K" for 1 < n < p, where t acts as nilpotent Jordan

block of size n:

t—

e A Lie algebra in Rep o, is an ordinary Lie algebra equipped
with a nilpotent derivation d of degree at most p.

0
0

0
0

0
0

0
0

1
0
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Semisimplification

e For f € Home(X, Y), say f is negligible if tr(f o g) = 0 for all
g € Home (Y, X). Collection of negligible morphisms form a
tensor ideal V.
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e For f € Home(X, Y), say f is negligible if tr(f o g) = 0 for all
g € Home (Y, X). Collection of negligible morphisms form a
tensor ideal V.

e The semisimplification C of C is defined as C/N.

e Have symmetric monoidal functor C — C called
semisimplification functor. Meaning C is a semisimple STC
(a, ®, ¢ are defined as images under semsimplification
functor).

e The image of an operadic Lie algebra under semisimplification
is an operadic Lie algebra.

e Informally, C is obtained by declaring all indecomposables to
be simple or if they have categorical dimension 0, zero.

e The Verlinde category Ver, is by definition the
semisimplification Rep o, of Rep . 17/34



Properties of Ver,

e Simple objects: Ly,...,L,_1, images of Ji,...,Jp—1 (resp.).
The indecomposable J, goes to zero as dim J, = p = 0.
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Properties of Ver,

e Simple objects: Ly,...,L,_1, images of Ji,...,Jp—1 (resp.).

The indecomposable J, goes to zero as dim J, = p = 0.

e Tensor product rule in general is given by the so called
"truncated Clebsch-Gordan rule”:

min(n’mypfn’pim)

Ln & Lm = @ L\n—m|+2i—1-
i=1

e Theorem of Ostrik says that all semisimple STCs fiber over
Ver,.
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Properties of Ver, (cont.)

Proposition: Ver, is not the representation category of an affine
supergroup scheme in characteristics p > 3.

Proof.
For p =5,
L3 L3=L1 L3 = 2 =1+t
So t = dim L3 is not integral. Similar idea for p > 5. O]
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Properties of Ver, (cont.)

Proposition: sVeck is a full subcategory of Ver,.

Proof.
Consider the full subcategory tensor generated by L, 1. L,_1 has

categorical dimension —1 with L,_1 ® L,y = Ly and
S?(Lp—1) = 0. Hence we get the category of supervector

spaces. L]

Upshot: Going back to part 1, any commutative algebra, Lie
theory, or algebraic geometry done in Ver, is new but also
generalizes known phenomena. Also, Vers = sVeck.
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Key idea

The semisimplification of an operadic Lie algebra (g, B) in Rep ap
is an operadic Lie algebra (g, B) in Ver,. In particular, when
p = 3, we get a Lie superalgebra (that might not satisfy

[x, [x,x]] = 0 for odd x, but not a concern for us).
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Example: gl

e Consider glg in characteristic 3 with usual basis ej;.
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Example: gl

e Consider glg in characteristic 3 with usual basis ej;.

e Since

e3s =0 = (adess)® =0
(glg, ad esp) is a Lie algebra in Rep a3.
e It decomposes as glg = 161 @ 8 @ (1 & J3):

o Therefore, its semisimplification is gl(4|1) = 16L; & 8Ly & L;.
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More semisimplifications:

e In any STC, define gl(V) = V ® V*, with Lie bracket B

B =1y @evy+ v @ Ly« o (Lg(v)zg(v) — Siv).ai(v))

Its semisimplification is gl(V).
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More semisimplifications:

e In any STC, define gl(V) = V ® V*, with Lie bracket B

B =1y @evy+ v @ Ly« o (Lg(v)zg(v) — Siv).ai(v))

Its semisimplification is gl(V).
e Similar statement for Lie algebra that preserves a
non-degenerate bilinear form (the semisimplification preserves

the semisimplification of the form).
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The Result, informally stated, again

Theorem (K). The Elduque and Cunha Lie superalgebras (and

many others) can be constructed as the semisimplification of an
exceptional Lie algebra equipped with a nilpotent derivation of

degree at most 3.
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Kac-Moody Lie Superalgebra

e The setup: A € Mat,(Z) such that diagonal entries are either
2 or 0; if a;; = 2, declare / to be an even index, if a;; = 0,
declare i to be an odd index. Define the Lie superalgebra §(A)
over K to be the free Lie superalgebra on generators
{ei, fi, hi}1<i<n subject to the relations:

lei, ] = Sjshi; [h, &j] = ajieji [h, fi] = —ayfi; [hi, hj] =0,

and let g(A) be g(A)/l, where | is the maximal ideal trivially
intersecting h = Khy @ --- ® Kh,.
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e The setup: A € Mat,(Z) such that diagonal entries are either
2 or 0; if a;; = 2, declare / to be an even index, if a;; = 0,
declare i to be an odd index. Define the Lie superalgebra §(A)
over K to be the free Lie superalgebra on generators
{ei, fi, hi}1<i<n subject to the relations:

lei, ] = Sjshi; [h, &j] = ajieji [h, fi] = —ayfi; [hi, hj] =0,

and let g(A) be g(A)/l, where | is the maximal ideal trivially
intersecting h = Khy @ --- ® Kh,.
e The Elduque and Cunha Lie superalgebras are of this form (or

“related”).

25/34



Semisimplification in Action

The 133-dimensional simple exceptional Lie algebra ¢7 can be

~

written ez = g(A), where

>
Il
o o o o o

The generator e; is ad-nilpotent of degree 3, so can view ¢7 as an
object in Rep a3 w.r.t. adey.
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Semisimplification in Action

Its semisimplification is a finite-dimensional simple exceptional
Eldque and Cunha Lie superalgebra g(A) of superdimension
(66[32), where

o O O O

Idea: the copy of J, spanned by e; and [e1, e3] in ¢7 became an
odd generator (resp. f) in the semisimplification.
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Semisimplification in Action

e Similarly, most of the other exceptional Lie superalgebras can
be constructed this way by choosing a suitable nilpotent
element (the sum of certain Chevalley generators), based on
comparing Cartan matrices.
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Semisimplification in Action

e Similarly, most of the other exceptional Lie superalgebras can
be constructed this way by choosing a suitable nilpotent
element (the sum of certain Chevalley generators), based on
comparing Cartan matrices.

e A few of them, however, cannot be determined by looking at
Cartan matrix alone; these must be manually determined. For
instance, there is the Elduque Lie superalgebra in
characteristic 5. This can be constructed by semisimplifying
eg with respect to e + e3 + e4.
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Summary of Results

Lie algebra Nilpotent element

Lie superalgebra

btg €1, € btj2;3

fa e see (x) below
€4 g(L 6)
er+ey see (%) below

eél) €1, €2, €6 9(27 6)(1)
e1+en, estes, er+es g(3,3)M
e +ex+eg 9(2, 3)(1)

e7 €1, €2, €7 9(4,6)
€1+ ez, ea +e7, e1 +er el(5;3)
e;+e+ey 9(4,3)
ey +e5+er f4; see (xx) below
e;t+ext+ester 9(1,6)

eg €1, €2, €8 9(8,6)
e1+ey, ex+es, e +es g(6,6)
e+ e+ eg 9(87 3)
ept+extegteg 9(3,6)
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Follow-Up Problems

e Which nilpotent derivations give the same semisimplifications
and why?
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Follow-Up Problems

e Which nilpotent derivations give the same semisimplifications
and why?

e Study the representation theory of these exceptional Lie
superalgebras by semisimplifying representations of the
exceptional Lie algebras they come from.

e What is the notion of a Kac-Moody Lie algebra in the
Verlinde category? Given such a notion, how does it relate to
semisimplifying a Kac-Moody Lie algebra in Rep ap?

e What other simple Lie superalgebras can be obtained this
way? What about simple Lie algebras in Ver,?

e Semisimplify other algebraic objects, like affine group
schemes. What happens?
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Part 3
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Some Open Problems

e Finite-Generation of Cohomology of Finite Group Schemes for
Ver,, in characteristic p
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Some Open Problems

e Finite-Generation of Cohomology of Finite Group Schemes for
Ver,, in characteristic p

e Polynomial Functors for STCs

e Classification of simple algebraic groups and Lie algebras in
Ver,

e Notions of reductive groups and root systems in Ver,, and
associated representation theory (some progress made for
GL(X))

e Deligne's Theorem analog in characteristic p

e Schur Duality type statements

e More generally: what theorems that extend from vector
spaces to supervector spaces extend to the Verlinde setting?
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