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Quantum groups

• Let g be a finite-dimensional simple Lie algebra over C, associated
to a Cartan matrix (aij)i ,j∈I , and root system ∆+ t∆−.

• The Drinfeld-Jimbo quantum group associated to g is given by:

Uq(g) = Q(q)
〈
ei , fi , ϕi

〉
i∈I

modulo certain relations that we will not recall.

• The subalgebra Uq(n+) ⊂ Uq(g) generated by the ei ’s is:

Uq(n+) = Q(q)
〈
ei

〉
i∈I

modulo the relation
∑1−aij

k=0 (−1)k
(1−aij

k

)
qi
eki eje

1−aij−k
i = 0, ∀i 6= j .
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The q-shuffle algebra

• An important viewpoint on Uq(n+) is given by comparing it to the
q-shuffle algebra defined by Green, Rosso, and Schauenburg:

F =
⊕

k∈N,i1,...,ik∈I
Q(q) · [i1 . . . ik ]

• endowed with the following associative shuffle product:

[i1 . . . ik ] ∗ [j1 . . . jl ] =
∑

{1,...,k+l}=AtB,|A|=k,|B|=l

qλA,B · [s1 . . . sk+l ]

where if A = {a1 < · · · < ak} and B = {b1 < · · · < bl}, we write:

sc =

{
i• if c = a•

j• if c = b•
and λA,B =

∑
A3a>b∈B

(αsa , αsb)

• This definition is designed so that there is an injective algebra
homomorphism Φ : Uq(n+) ↪→ F given by ei 7→ [i ], for all i ∈ I .
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Standard Lyndon words

• By work of Lusztig, there exists a PBW basis:

Uq(n+) =
⊕

β1≥···≥βn∈∆+

Q(q) · eβ1 . . . eβn

where eβ ∈ Uq(n+) deform the root vectors of n+, for all β ∈ ∆+.

• Above, ≥ is any convex order on ∆+, but there is a particularly
interesting choice. Lalonde-Ram showed that there is a bijection:

` : ∆+ ∼−→
{

standard Lyndon words
}

where a word [i1 . . . ik ] ∈ I k is called Lyndon if it is lex smaller than
all its suffixes. Thus, lexicographic order induces an order on ∆+.

• Leclerc showed that Φ(eβ) has the minimal largest word among all
degree β elements of Im Φ, and this largest word is precisely `(β).
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Example: words in type An

• Consider the Dynkin diagram:

• The positive roots are αij = αi + · · ·+ αj for all 1 ≤ i ≤ j ≤ n.

• The bijection ` is given by:

`(αij) = [i . . . j ]

(somewhat predictably).

• Now suppose you wanted an affine version of all of this business:

Uq(g) Uq(ĝ)

• The shuffle algebra still makes sense (using letters in Î = I t 0
instead of in I ) but the Lalonde-Ram bijection breaks down because
of the imaginary roots. So does Leclerc’s description of Φ(eβ).
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Quantum loop/affine groups

• So we need a new viewpoint on Uq(ĝ). Fortunately, we have an
isomorphism (proposed by Drinfeld and proved by Beck, Damiani):

Uq(ĝ) ∼= Uq(Lg)

• where the quantum loop group Uq(Lg) has generators:

{ei ,d , fi ,d , ϕ±i ,d ′}i∈I ,d∈Z,d ′≥0

• However, the subalgebra Uq(Ln+) ⊂ Uq(Lg) generated by {ei ,d}
does not match the subalgebra Uq(n̂+) ⊂ Uq(ĝ) under the
isomorphism in the box. The two subalgebras are “orthogonal”.

• Our goal: to do for Uq(Ln+) what was done for Uq(n+): define a
shuffle algebra model, and describe PBW bases via Lyndon words.
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The loop q-shuffle algebra

• Instead of using i ∈ I as letters, let us use the symbols i (d) as
letters, for any i ∈ I and d ∈ Z. Consider the vector space:

F̂ =
⊕

k∈N,i1,...,ik∈I ,d1,...,dk∈Z
Q(q) ·

[
i
(d1)
1 . . . i

(dk )
k

]

• and make it into an algebra via the following shuffle product:[
i
(d1)
1 . . . i

(dk )
k

]
∗
[
j
(e1)
1 . . . j

(el )
l

]
=∑

{1,...,k+l}=AtB
|A|=k,|B|=l

∑
π1+···+πk+l=0

π1,...,πk+l∈Z

coefficient︸ ︷︷ ︸
∈Q(q)

·
[
s

(t1+π1)
1 . . . s

(tk+l+πk+l )
k+l

]

where if A = {a1 < . . . < ak} and B = {b1 < . . . < bl}, we write:

sc =

{
i• if c = a•

j• if c = b•
, tc =

{
d• if c = a•

e• if c = b•

The coefficients have a reasonable, but rather lengthy definition.
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Standard Lyndon loop words

The results on this slide are joint work with Tsymbaliuk

• The algebra F̂ is designed so that there is a homomorphism:

Φ̂ : Uq(Ln+) ↪→ F̂ , ei ,d 7→
[
i (d)
]
, ∀i ∈ I , d ∈ Z

• Loop words
[
i
(d1)
1 . . . i

(dk )
k

]
can be ordered lexicographically by:

i (d) < j (e) if
(
d > e

)
or
(
d = e and i < j

)
• This yields a notion of Lyndon loop words, and we have a bijection:

` : ∆+ × Z ∼−→
{

standard Lyndon loop words
}

• Moreover, Im Φ̂ consists of linear combinations of loop words, the
largest words of which are concatenations of {`(β, d)}β∈∆+,d∈Z.
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On the bijection `

• The bijection ` satisfies the property:

`(β, d) =
[
i
(d1)
1 . . . i

(dk )
k

]
⇒ `(β, d+ht β) =

[
i
(d1+1)
1 . . . i

(dk+1)
k

]
so to prescribe `, it suffices to give `(β, d) for d ∈ {1, . . . , ht β}.

• Moreover, `(β, d) only has letters i (∗) with ∗ ∈
{⌊

d
ht β

⌋
,
⌈

d
ht β

⌉}
.

• For example, in type An we have for all d ∈ {1, . . . , j − i + 1}:

`(αij , d) =
[
(j − d + 1)(1)(j − d)(0) . . . i (0)(j − d + 2)(1) . . . j (1)

]
• Theorem (N-T): The order on ∆+ × Z induced by the bijection `

and lexicographic order on words is convex. This allows us to define
root vectors e(β,d) ∈ Uq(Ln+) for all β ∈ ∆+ and d ∈ Z, using the
Beck-Damiani affine version of Lusztig’s root vectors eβ ∈ Uq(n+).
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Application: the Feigin-Odesskii shuffle algebra 1

• Our definition of the loop shuffle algebra F̂ allows us to connect it
with another shuffle algebra incarnation of Uq(Ln+), this one due
to Enriquez (inspired by the elliptic algebras of Feigin-Odesskii):

A+ ⊂
⊕

(ki )i∈I∈NI

Q(q)(. . . , zi1, . . . , ziki , . . .)
symmetric in zi1,...,ziki ,∀i∈I

• consisting of rational functions of the form:

R(. . . , zi1, . . . , ziki , . . .) =
r(. . . , zi1, . . . , ziki , . . .)∏unordered

{i 6=i ′}⊂I
∏1≤a′≤ki′

1≤a≤ki (zia − zi ′a′)

for r a Laurent polynomial, symmetric in zi1, . . . , ziki ∀i , such that:

r(. . . , zia, . . .)
∣∣∣
(zi1,zi2,...,zi,1−aij

)7→(w ,wq−2
i ,...,wq

2aij
i ), zj1 7→wq

aij
i

= 0

for all i 6= j . The above vanishing of r is called a wheel condition.
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Application: the Feigin-Odesskii shuffle algebra 2

• Let ζij(x) = x−q−(αi ,αj )

x−1 . The multiplication on A+ is given by:

F (. . . , zi1, . . . , ziki , . . .)∗G (. . . , zi1, . . . , zili , . . .) = symmetrization of

F (. . . , zi1, . . . , ziki , . . .)G (. . . , zi ,ki+1, . . . , zi ,ki+li , . . .)

i ,j∈I∏
a≤ki ,b>kj

ζij

(
zia
zjb

)

• This is designed so that there is an algebra homomorphism:

Υ : Uq(Ln+) −→ A+, ei ,d 7→ zdi1, ∀i ∈ I , d ∈ Z

• I showed that the map Υ is an isomorphism in affine type A,
although those methods do not readily generalize to other types.

• Varagnolo-Vasserot recently proved a result that implies the map
Υ is injective in all finite types. So what about surjectivity?
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Application: the Feigin-Odesskii shuffle algebra 3

• Theorem (N-T) The map Υ is surjective, hence an isomorphism.

• As a technical step, we relate the shuffle algebras F̂ and A+. To
this end, we show that there exists an algebra homomorphism:

ι : A+ ↪→ F̂

sending a rational function R ∈ A+ to:∑
i1,...,ik∈I
d1,...,dk∈Z

[
i
(d1)
1 . . . i

(dk )
k

] ∫
|z1|�···�|zk |

R(z1, . . . , zk)z−d1
1 . . . z−dkk∏

1≤a<b≤k ζiaib(za/zb)

k∏
a=1

dza
2πiza

• Moreover, the following compositions are equal:

Uq(Ln+)

Φ̂

""Υ // A+ ι // F̂

which connects the two shuffle algebra realizations of Uq(Ln+).
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