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Overview of the talk

Part 1: The positive Grassmannian, the amplituhedron, and the
BCFW tiling conjecture

Part 2: Cluster algebras, and the cluster adjacency conjecture for the
amplituhedron
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Review of the Grassmannian

The Grassmannian Grk,n(C) := {V | V ⊂ Cn, dimV = k}
Represent an element of Grk,n by a full-rank k × n matrix C .(

1 0 0 −3
0 1 2 1

)
Given I ∈

([n]
k

)
, the Plücker coordinate ⟨I ⟩C is the minor of the k × k

submatrix of C in column set I .
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What is the positive Grassmannian?

Background: Lusztig’s total positivity for G/P 1994, Rietsch 1997,
Postnikov’s 2006 preprint on the totally non-negative (TNN) or “positive”
Grassmannian.

Let Gr≥0k,n be subset of Grk,n(R) where Plucker coords ⟨I ⟩ ≥ 0 for all I .

Inspired by matroid stratification, one can partition Gr≥0k,n into pieces based
on which Plücker coordinates are positive and which are 0.

Let M ⊆
([n]
k

)
. Let S tnn

M := {C ∈ Gr≥0k,n | ⟨I ⟩C > 0 iff I ∈ M}.

In contrast to terrible topology of matroid strata ...

(Postnikov) If S tnn
M is non-empty it is a (positroid) cell, i.e. homeomorphic

to an open ball. So we have positroid cell decomposition

Gr≥0k,n = ⊔S tnn
M .
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Cells of the positive Grassmannian

Thm (Postnikov): The positroid cells of Gr≥0k,n are in bijection with
equivalence classes of planar bicolored (plabic) graphs.

1

9

8

7

6 5

4

3

2

A plabic graph is a planar graph embedded in a disk, with boundary
vertices labeled 1, 2, . . . , n, and internal vertices colored black or white.
Say two plabic graphs move-equivalent if they can be obtained from each
other by a series of local moves:

(M1): (M2):

(M3):
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How to read off a positroid cell from a plabic graph

Positroid cells ↔ move-equivalence classes of plabic graphs

21

4 3

Using moves we can assume graph G is bipartite and that every
boundary vertex is incident to a white vertex.

Let M(G ) := {∂(P) | P is an almost perfect matching of G}.
21

4 3

21

4 3

21

4 3

21

4 3

21

4 3

E.g. for graph above, get M(G ) = {12, 13, 14, 23, 24}. So this
represents a positroid cell of Gr2,4 in which precisely these Plücker
coordinates are positive.

Theorem (Postnikov): M(G ) is the set of nonzero Plücker
coordinates of a positroid cell, and all cells obtained this way.
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What is the amplituhedron?

The amplituhedron An,k,m(Z ), Arkani-Hamed–Trnka (2013).

Fix n, k,m with k +m ≤ n.
Let Z ∈ Mat>0

n,k+m be an n × (k +m) matrix with max’l minors positive.

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to span(CZ ).

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Special cases:

If m = n − k , An,k,m = Gr≥0k,n .
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What is the amplituhedron?

The amplituhedron An,k,m

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m (max minors > 0).

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Special cases:

If k = 1, An,k,m ⊂ Gr1,1+m is equivalent to a cyclic polytope with n
vertices in Pm:
E.g. if m = 2, let Z1, . . . ,Zn denote rows of Z ∈ Mat>0

n,3 .

Positivity implies they represent vertices of convex polytope in P2.
Image of Gr≥01,3 under Z̃ gives entire polytope.
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What is the amplituhedron?

The amplituhedron An,k,m(Z )

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m (max minors > 0).

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Special cases:

If m = 1, An,k,m ⊂ Grk,k+1 is homeomorphic to the bounded complex
of the cyclic hyperplane arrangement (Karp–W.).
E.g. A5,3,1:
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Remarks on the amplituhedron

The amplituhedron An,k,m

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m (max minors > 0).

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

An,k,m(Z ) is a full-dimensional (km-dimensional) subset of Grk,k+m.

Clearly An,k,m(Z ) depends on the choice of matrix Z . However, as
we’ll see, many properties of An,k,m(Z ) do not depend on Z .

In order to talk about An,k,m(Z ) as a subset of Grk,k+m, we need to
have some good coordinates on Grk,k+m which take Z into account!
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Coordinates for the amplituhedron

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m with rows Z1, . . . ,Zn.

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Let Y ∈ An,k,m(Z ) ⊂ Grk,k+m (viewed as matrix).
Given I = {i1 < · · · < im} ⊂ [n], let

⟨⟨I ⟩⟩ = ⟨⟨YZI ⟩⟩ = ⟨⟨YZi1 . . .Zim⟩⟩ := det


− Y −
− Zi1 −

...
− Zim −


Call it twistor coordinate ⟨⟨YZI ⟩⟩ (Arkani-Hamed–Thomas–Trnka).
Rk: Y is determined by twistor coords; the twistor coordinate ⟨⟨YZI ⟩⟩
equals the Plücker coordinate ⟨I ⟩Y⊥Z t .
We refer to a polynomial in twistor coordinates as a functionary.
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Motivation for the amplituhedron?

The amplituhedron An,k,m

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m (max minors > 0).

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Motivation for the m = 4 amplituhedron (N = 4 SYM):

the recurrence of Britto–Cachazo–Feng–Witten (2005) expresses
scattering amplitudes as sums of rat’l functions of momenta. Indiv
terms have “spurious poles” – singularities not present in amplitude.

Hodges (2009) observed that in some cases, the amplitude is the
volume of a polytope, with spurious poles arising from internal
boundaries of a triangulation of the polytope. Asked if in general each
amplitude is the volume of some geometric object.

AH–T found the amplituhedron as the answer to this question;
BCFW recurrence is interpreted as “triangulation” of An,k,4(Z ).
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Tiles and tilings of the amplituhedron

Have Gr≥0k,n = ⊔πSπ cell complex, and Z̃ : Gr≥0k,n → An,k,m(Z ) a continuous
surjective map onto km-dim’l amplituhedron An,k,m(Z ).

If Z̃ is injective on a km-dim’l cell Sπ, we say that Zπ := Z̃ (Sπ) is a tile for
An,k,m(Z ). A Z̃ -induced tiling (or positroid tiling) of An,k,m(Z ) is a
collection {Zπ | π ∈ C} of tiles, such that:

their union equals An,k,m(Z )

their interiors are pairwise disjoint
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Tilings of the amplituhedron when k = 1,m = 2, n = 5

The map Z̃ : Gr≥0k,n → Grk,k+m becomes Z̃ : Gr≥01,5 → Gr1,3.
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BCFW tiling conjecture

Have Gr≥0k,n = ⊔πSπ cell complex, and Z̃ : Gr≥0k,n → An,k,m(Z ) a continuous
surjective map onto km-dim’l amplituhedron An,k,m(Z ).

If Z̃ is injective on a km-dim’l cell Sπ, we say that Zπ := Z̃ (Sπ) is a tile for
An,k,m(Z ). A Z̃ -induced tiling (or positroid tiling) of An,k,m(Z ) is a
collection {Zπ | π ∈ C} of tiles, such that:

their union equals An,k,m(Z )

their interiors are pairwise disjoint

The BCFW tiling conjecture:
Arkani-Hamed–Trnka interpreted each way of iterating the BCFW
recurrence as giving a collection of 4k-dimensional cells in Gr≥0k,n whose
images conjecturally tile the m = 4 amplituhedron An,k,4(Z ).
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General BCFW cells

For 1 ≤ a < b < · · · < c < d < n, if we have two plabic graphs on
{1, 2, . . . , a, b, n} and {b, . . . , c , d , n}, we can build their BCFW product:

The set of general BCFW cells is defined recursively:

1 For k = 0, the trivial cell Gr>0
0,n is a general BCFW cell.

2 If S is a general BCFW cell, then so is any cell obtained by inserting a
zero column, performing a cyclic shift, or reflecting it.

3 If SL and SR are general BCFW cells on NL and NR , then so is their
BCFW product SL ▷◁ SR .

Standard BCFW cells: the special case where we disallow cyclic shifts/
reflections, and we only insert a zero column in the penultimate position.
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The BCFW recurrence and BCFW tiling conjecture

BCFW tiling conjecture: the above recurrence produces a collection of
BCFW cells whose images tile the amplituhedron.

Lauren K. Williams (Harvard) Cluster algebras and tilings for the m = 4 amplituhedron 2023 17 / 45



The BCFW recurrence and the BCFW tiling conjecture

Note: When we iterate the BCFW recurrence, we always arrive at a
collection of N(n − 3, k + 1) = 1

k+1

(n−4
k

)(n−3
k

)
cells. (Narayana number!)
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Standard BCFW cells and combinatorics

Recall that standard BCFW cells are the ones obtained by iterating the
BCFW recurrence in a canonical way; enumerated by Narayana numbers.
∃ explicit bijections between the standard BCFW cells in Gr≥0k,n and:

pairs of noncrossing lattice paths in a k × (n − k − 4) rectangle,
equivalently, plane partitions in a 2× k × (n − k − 4) rectangle
(Karp-W.-Zhang)

chord diagrams (Evan-Zohar–Lakrec–Tessler)

1 2 3 4 5 6 7 8 9 10 11 12

c3

c1 c2

c5

c4

Theorem (Evan-Zohar–Lakrec–Tessler)

The BCFW tiling conjecture holds for the standard BCFW cells.

Proof used explicit coordinates for cells coming from chord diagrams.
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BCFW tiling Theorem for general BCFW cells (EZ-L-P-SB-T-W)

Every collection {Sr} of general BCFW cells obtained by iterating the
BCFW recurrence ⇝ tiling {Zr} of the amplituhedron An,k,4(Z ). That is:

the amplituhedron map is injective on each general BCFW cell Sr, i.e.

Zr := Z̃ (Sr) is a tile;

the open tiles {Z ◦r } are pairwise disjoint;

and the tiles in {Zr} cover the amplituhedron An,k,4(Z ).
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Ideas behind the proof

We have a recursive structure on BCFW cells: they are built up
using operations of cyclic shift, reflection, and the BCFW product.

To show that Z̃ is injective on a BCFW cell, we show how to invert
the map. We construct a particular parameterization of the elements
of each BCFW cell Sr compatible with the above operations.

We inductively define some coordinate functionaries, functions on the
image Z̃ (Sr) ⊂ Grk,k+4, and show that Z̃ (Sr) is the subset of Grk,k+4

where the coordinate functionaries are positive. We can then use the
coordinate functionaries to explicitly invert Z̃ on the image.
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Ideas behind the proof

We have a recursive structure for the BCFW collections {Sr} of cells
whose images {Zr} are supposed to tile the amplituhedron:

To show that any two elements Zr and Zr′ of {Zr} have disjoint
interiors, we use certain collections of functionaries on An,k,4(Z ) and
show that their sign patterns are different on Zr and Zr′ . These
functionaries are inductively constructed using cyclic shift, reflection,
and a map called product promotion, so we analyze how signs of
functionaries evolve when we apply these operations.

To show that {Zr} covers the amplituhedron, we use the inductive
construction of BCFW collections plus some results of
Even-Zohar–Lakrec–Tessler and Bao-He.
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Part II: The amplituhedron and cluster algebras

Is there a connection between the amplituhedron and cluster algebras?

Clue that answer should be yes:
Physicists had observed that when one calculates scattering amplitudes as
rat’l functions of momenta, the poles arising in expressions seemed to be
related to compatible collections of cluster variables (“cluster adjacency”)
– Drummond–Foster–Gurdogan, Lukowski–Parisi–Spradlin–Volovich

Next ... review notion of cluster algebra
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What is a cluster algebra?

Cluster algebras (Fomin–Zelevinsky)

Cluster algebras are a class of commutative rings with remarkable
combinatorial structure. They come with distinguished generators called
cluster variables, and relations are encoded by quivers and quiver mutation.

Cluster varieties are varieties whose coordinate rings are cluster algebras;
they come with many nice torus charts.

Examples: Grassmannians, flag varieties, Schubert varieties, . . .

It’s useful to exhibit a cluster structure because of the many general
results about them (Laurent phenomenon, positivity theorem, etc).
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Quivers

A quiver is a finite directed graph.
Multiple edges are allowed.
Oriented cycles of length 1 or 2 are forbidden.
Two types of vertices: “frozen” and “mutable.”
Ignore edges connecting frozen vertices. Let s be the total number of
vertices, of which r ≤ s are mutable.
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Quiver Mutation

k k k k

Let k be a mutable vertex of Q.

Quiver mutation µk : Q 7→ Q ′ is computed in 3 steps:

1. For each instance of j → k → ℓ, introduce an edge j → ℓ.
2. Reverse the direction of all edges incident to k.
3. Remove oriented 2-cycles.

Mutation is an involution, i.e. µ2
k(Q) = Q for each vertex k.

Two quivers are mutation-equivalent if one can get between them via a
sequence of mutations.

Lauren K. Williams (Harvard) Cluster algebras and tilings for the m = 4 amplituhedron 2023 26 / 45



Seeds

Let F be a field of rational functions in s independent variables over C.
A seed in F is a pair (Q,x) consisting of:

a quiver Q with r mutable vertices and s − r frozen vertices.

an extended cluster x, an s-tuple of algebraically independent (over
C) elements of F, indexed by the vertices of Q.

frozen variables ↔ frozen vertices

cluster variables ↔ mutable vertices

Cluster = {cluster variables }
Extended Cluster = {cluster variables, frozen variables}
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Seed mutation

Let k be a mutable vertex in Q and let xk be the corresponding cluster
variable. Then the seed mutation µk : (Q,x) 7→ (Q ′,x′) is defined by

Q ′ = µk(Q)

x′ = x ∪ {x ′k} \ {xk}, where

xkx
′
k =

∏
j←k

xj +
∏
j→k

xj (is the exchange relation)

Remark: Mutation is an involution.
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Definition of cluster algebra

Let (Q,x) be a seed in F, with r initial cluster variables {x1, . . . , xr}
and s − r frozen variables {xr+1, . . . , xs}.
Let χ be the (possibly infinite) set of all cluster variables, obtained by
performing all possible mutation sequences starting from the initial
cluster.

Let the ground ring be R = C[x±r+1, . . . , x
±
s ], the Laurent polynomial

ring generated by frozen variables.
(Alternatively let R = C[xr+1, . . . , xs ].)

The cluster algebra A(Q) := R[χ] ⊂ F is the R-subalgebra
generated by χ.
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Example of a cluster algebra

Label the vertices of a polygon by 1 . . . n, fix a triangulation, and label
sides/diagonals by Plücker coordinates.
Associate a quiver, with frozen/mutable vertices at sides/diagonals, and
arrows (dotted) inscribed in triangles of triangulation.
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Flips of the triangulation ↔ mutation ↔ 3-term Plücker relations

This identifies our cluster algebra with the coordinate ring of the
Grassmannian C[Gr2,n]!
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Example of a cluster algebra

More generally, the coordinate ring of the Grassmannian C[Grk,n] has the
structure of a cluster algebra (Scott). An initial seed is the following:

∅

3467

3567

2367

2567

1267

1567

3457 2347 1237

3456 2345 1234

4567

Note: All Plücker coordinates are cluster variables of C[Grk,n] but in
general there are infinitely many cluster variables.

A classification of cluster variables/clusters is not understood in general.
Even for Gr3,n there is only conjectural classification of cluster variables.
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Recall: Amplituhedron and twistor coordinates

Fix n, k,m with k +m ≤ n, let Z ∈ Mat>0
n,k+m with rows Z1, . . . ,Zn.

Let Z̃ be map Gr≥0k,n → Grk,k+m sending a k × n matrix C to CZ .

Set An,k,m(Z ) := Z̃ (Gr≥0k,n) ⊂ Grk,k+m.

Let Y ∈ An,k,m ⊂ Grk,k+m. Given I ∈
([n]
m

)
, define twistor coordinate

⟨⟨I ⟩⟩ = ⟨⟨YZI ⟩⟩ = ⟨⟨YZi1 . . .Zim⟩⟩ := det


− Y −
− Zi1 −

...
− Zim −


Twistor coordinates ⟨⟨I ⟩⟩ for An,k,m(Z ) indexed by

([n]
m

)
, just like the

Plücker coordinates ⟨I ⟩ of Grm,n.
We refer to polynomials in twistor coordinates as functionaries.
These are functions on the amplituhedron.
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The cluster adjacency conjecture for the amplituhedron

Let Zr = Z̃ (Sr) be a tile of An,k,m(Z ). We say that Zr′ is a facet of Zr if

Zr′ ⊂ ∂Zr;

cell Sr′ is contained in Sr;

Zr′ has codimension 1 in Zr.

Cluster adjacency conjecture for tiles

Let Zr be a tile of the amplituhedron An,k,m(Z ). Then for each facet Z ′r
of Zr, there is a functionary Fr′(⟨⟨I ⟩⟩) which vanishes on Zr′ , such that the
collection

F = {Fr′(⟨I ⟩) : Zr′ a facet of Zr}

is a collection of compatible cluster variables for Grm,n.

The above statement generalizes a statement for m = 2 which was
conjectured by Lukowski–Parisi–Spradlin–Volovich (2019), and proved by
Parisi-Sherman-Bennett-W (2021).
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Cluster adjacency for the amplituhedron

Cluster adjacency theorem for BCFW tiles (EZ-L-P-SB-T-W)

Let Zr be a general BCFW tile of An,k,4(Z ). Then for each facet Zr′ of
Zr, there is a functionary Fr′(⟨⟨I ⟩⟩) which vanishes on Zr′ , such that the set

{Fr′(⟨I ⟩) : Zr′ a facet of Zr}

is a collection of compatible cluster variables for Gr4,n.
Moreover, each such Fr′ has a fixed sign on the interior Z ◦r of the tile.

What are these functionaries/ clust variables & how are they constructed?
Recall: the BCFW tiles are constructed recursively

There is an algebraic counterpart of the BCFW product.
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Product promotion

Choose 1 ≤ a < b < c < d < n s.t. a < b and c < d < n are consecutive.
Let A = Ĝr4,{n12...ab}, B = Ĝr4,{b...cdn}, and Ĝr4,n be Grassmannians of
4-planes in vector spaces with bases labeled by {n, 1, 2, . . . , a, b}, etc.
Given a matrix (v1| . . . |vn) with column vectors v1, . . . , vn, identify its
Plücker coordinate ⟨i1, . . . , ik⟩ with the element vi1 ∧ · · · ∧ vik .
Then product promotion is the homomorphism
Ψ : C(A)× C(B) → C(Ĝr4,n) induced by the following substitution:

b 7→ b − ⟨b c d n⟩
⟨a c d n⟩

a on A

n 7→ n − ⟨a b c n⟩
⟨a b c d⟩

d +
⟨a b d n⟩
⟨a b c d⟩

c and d 7→ d − ⟨a b d n⟩
⟨a b c n⟩

c on B
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Product promotion

Choose 1 ≤ a < b < c < d < n s.t. a < b and c < d < n are consecutive.
Let A = Ĝr4,{n12...ab}, B = Ĝr4,{b...cdn}, and Ĝr4,n be Grassmannians of
4-planes in vector spaces with bases labeled by {n, 1, 2, . . . , a, b}, etc.
Given a matrix (v1| . . . |vn) with column vectors v1, . . . , vn, identify its
Plücker coordinate ⟨i1, . . . , ik⟩ with the element vi1 ∧ · · · ∧ vik .
Then product promotion is the homomorphism
Ψ : C(A)× C(B) → C(Ĝr4,n) induced by the following substitution:

b 7→ b − ⟨b c d n⟩
⟨a c d n⟩

a on A

n 7→ n − ⟨a b c n⟩
⟨a b c d⟩

d +
⟨a b d n⟩
⟨a b c d⟩

c and d 7→ d − ⟨a b d n⟩
⟨a b c n⟩

c on B

Theorem (EZ-L-P-SB-T-W)

Product promotion is a cluster quasi-homomorphism. In particular, it
takes cluster variables to cluster variables and compatible cluster variables
to compatible cluster variables (up to Laurent monomial in frozens).

Lauren K. Williams (Harvard) Cluster algebras and tilings for the m = 4 amplituhedron 2023 36 / 45



Cluster algebra quasi-homomorphisms

A cluster algebra quasi-homomorphism (Chris Fraser) is an algebra
homomorphism taking each cluster variable/ cluster to a cluster
variable/cluster, up to a Laurent monomial in frozen variables.

Requiring that cluster variables map to cluster variables is too strong.

For elements x , y ∈ A, say that x is proportional to y , writing x ∝ y ,
if x = My for some Laurent monomial M in the frozen variables.
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Cluster quasi-homomorphism (can ignore!)

Given a seed Σ = (Q, (x1, . . . , xs)) the exchange ratio of xi (with respect
to Σ) is

ŷΣ(xi ) =

∏
j :i→j x

#arr(i→j)
j∏

j :j→i x
#arr(j→i)
j

.

Let A and A be two cluster algebras, both of the same rank r , and with
respective groups P and P of Laurent monomials in the frozen variables.
Then an algebra homomorphism f : A → A that satisfies f (P) ⊆ P is
called a quasi-homomorphism from A to A if there are seeds
Σ = ((x1, . . . , xs),Q) and Σ = ((x̄1, . . . , x̄s̄), Q̄) for A and A, such that

1 f (xi ) ∝ x̄i for 1 ≤ i ≤ r

2 f (ŷΣ(xi )) = ŷΣ(x̄i ) for 1 ≤ i ≤ r .

3 the map i 7→ ī of mutable nodes in Q and Q̄ extends to an
isomorphism of the corresponding induced subquivers.
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Cluster adjacency theorem for BCFW tiles (EZ-L-P-SB-T-W)

Let Zr be a general BCFW tile of An,k,4(Z ). Then for each facet Zr′ of
Zr, there is a functionary Fr′(⟨⟨I ⟩⟩) which vanishes on Zr′ , such that the set

{Fr′(⟨I ⟩) : Zr′ a facet of Zr}

is a collection of compatible cluster variables for Gr4,n.

Proof idea:

Have recursive construction of BCFW tiles by BCFW product.

Each “facet functionary” for tile of GL ▷◁ GR is either image of facet
functionary of GL or GR under product promotion, or is ⟨⟨I ⟩⟩ for
I ∈

({a,b,c,d ,n}
4

)
.

Product promotion is a cluster quasi-homomorphism, so cluster
vars/clusters go to cluster vars/clusters (up to frozens).
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Further cluster algebra connections for the amplituhedron

We associate to each general BCFW tile Zr a larger collection x(r) of
compatible cluster variables of Gr4,n (including the “facet functionaries”).

Sign description of BCFW tiles (EZ-L-P-SB-T-W)

Let Zr be a general BCFW tile. For each element x of x(r), the
functionary x(Y ) has a definite sign sx on Z ◦r and

Z ◦r = {Y ∈ Grk,k+4 : sx x(Y ) > 0 for all x ∈ x(r)}.

Analogous to fact that the totally positive Grassmannian is the subset of
the Grassmannian where certain cluster variables are positive.

Furthermore, in the case of a standard BCFW tile (i.e. coming from a
chord diagram), we have an explicit “local” description of all these
compatible cluster variables as well as their quiver.
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ᾱi β̄i

γ̄i δ̄i ε̄i

γ̄j δ̄j ε̄j
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ᾱjε̄j

if same-end
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Explicit description of cluster variables

Theorem (Even-Zohar–Lakrec–Parisi–Sherman-Bennett–Tessler–W)

Have an explicit description of cluster variables (as “chain polynomials”)
and cluster containing each BCFW tile of An,k,4(Z ).

Notation for quadratic function in Plücker coordinates:

⟨a b c | d e | f g h⟩ = ⟨a b c d⟩ ⟨e f g h⟩ − ⟨a b c e⟩ ⟨d f g h⟩ (1)

More generally, define the chain polynomials of degree k + 1 by:〈
a0 b0 c0 | x01 x11 | b1 c1 | x02 x12 | b2 c2 | . . . | x0k x1k | bk ck dk

〉
=

∑
t∈{0,1}k

(−1)
∑

ti ⟨a0 b0 c0 x t11 ⟩ ⟨x
1−t1
1 b1 c1 x

t2
2 ⟩ ⟨x

1−t2
2 b2 c2 x

t3
3 ⟩ · · · ⟨x

1−tk
k bk ck dk ⟩

Cluster variables from chord diagram: roughly five cluster variables get
associated to each chord c in chord diagram, and formula for each cluster
variable associated to c (a chain polynomial) depends on chords above c .
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Explicit description of cluster variables
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Example
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Thank you for listening!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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“Cluster algebras and the m = 4 amplituhedron,”

Even-Zohar, Lakrec, Parisi, Sherman-Bennett, Tessler, Williams arXiv:2310.17727

Lauren K. Williams (Harvard) Cluster algebras and tilings for the m = 4 amplituhedron 2023 45 / 45


