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Make no little plans...



outline (some sketches)

Goal: Relate irreducible characters of representations of real
and p-adic reductive groups, e.g. split classical groups.

1 What could one mean by this? Short answer: find relations
among the “decomposition numbers” relating irreducible
characters to characters of standard modules. These are
given by the Kazhdan-Lusztig polynomials of the title, so
one really has to relate the geometry that defines them.

2 Geometry of the LLC over R.
3 Geometry of LLC over Qp.

4 Main results for certain classical split groups (joint with
Leticia Barchini extending earlier joint work with Dan
Ciubotaru): strong geometric relations between (2) and (3)
that imply the KL polynomials that appear in the p-adic
case are a computable subset of those for the real case.



irreducible characters for GR (some plans)

Fix GR with maximal compact subgroup KR. Harish-Chandra
determined the characters of the discrete series of GR.

Then work of many people showed how to explicitly compute
the characters of parabolically induced representations,

IndGR
MRARNR

(σ ⊗ ν ⊗ 1),

with σ a limit of discrete series. So characters of these
representations are taken to be well-known.

The strategy is then to relate the irreducible characters to these
standard characters.



langlands classfication (some parameters)

Fix an infinitesimal character λ. There is a (finite) parameter
set Parλ very roughly consisting of GR conjugacy classes of
pairs γ = (MRARNR, σ ⊗ ν ⊗ 1). To each γ one can associate

std(γ) = IndGR
MRARNR

(σ ⊗ ν ⊗ 1)

and a canonical irreducible subquotient irr(γ) inducing a
bijection

Parλ −→ ĜR,λ = {irreps of GR, inftl. char λ}
γ 7→ irr(γ)

As characters (or in an appropriate K group), we write

[irr(γ)] =
∑

δ∈Parλ

mγδ [std(δ)].

Computing irreducible characters amounts to computing the
integers mγδ. How?!



computing the mγδ (some geometry)

For λ integral, one key idea is to interpret Parλ as (certain)
irreducible K = (KR)C equivariant local systems on the
complex flag variety B.

To each γ ∈ Loc′K(B), one may consider a constructible sheaf
con(γ) and its perverse extension per(γ). Then, in an
appropriate K group, write

[per(γ)] =
∑

δ∈Loc′K(B)

mg
γδ [con(δ)].

Vogan, Lusztig-V: These geometric multiplicities match the
representation theoretic ones, and they are effectively
computable,

mγδ = ±mg
γδ .



relating to the p-adic case (some problems)

Remember we are trying to match the coefficients mγδ with
their p-adic counterparts. But this is hopeless because there is
no p-adic analog of LocK(B). We need to see the dual group.

First try: interpret Parλ as (certain) irreducible G∨ equivariant
local systems on the space of real Langlands parameters,{

ϕ : WR → G∨ | ...
}

.

The problem is that every G∨ orbit is closed so per(γ) = con(γ)
for all γ. The geometry isn’t rich enough.

Adams-Barbasch-Vogan modified the space of Langlands
parameters to remedy this.



adams-barbasch-vogan geometry (some
friends)

ABV reinterpet Parλ as irreducible G∨ equivariant local
systems on an ABV space Xλ. To each γ, δ ∈ LocG∨(Xλ), one
can write

[con(γ)] =
∑
δ

Mg
γδ [per(δ)].

ABV: geometric multiplicities match the representation
theoretic ones, and they are effectively computable,

mγδ = ±Mg
δγ .

Note this is fundamentally different from the Lusztig-Vogan
setting.



abv space Xλ (some more parameters)

Assume λ ∈ h∗ integral, real; think of λ ∈ h∗ ≃ h∨. Let

p∨(λ) be the sum of the nonnegative eigenspaces of ad(λ),

and P∨(λ) for the conjugates of p∨(λ). Then, roughly, there is a
symmetric subgroup K∨ of G∨ such that

Xλ = G∨ ×K∨ P∨(λ) = G∨ × P∨(λ)
/
(gk, x) ∼ (g, kx).

There is a canonical bijection LocG∨(Xλ) = LocK∨(P∨(λ)) that
preserves all geometric information.

Upshot: The decomposition numbers for GR are controlled by
the K∨ orbits on P∨(λ).
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the abv space Xλ

Assume λ ∈ h∗ integral; think of λ ∈ h∗ ≃ h∨. Let

p∨(λ) be the sum of the nonnegative eigenspaces of ad(λ),

and P∨(λ) for the conjugates of p∨(λ). Then, roughly, there is a
symmetric subgroup K∨ of G∨ such that

Xλ = G∨ ×K∨ P∨(λ) = G∨ × P∨(λ)
/
(gk, x) ∼ (g, kx).

There is a canonical bijection LocG∨(Xλ) = LocK∨(P∨(λ)) that
preserves all geometric information.

Upshot: The decomposition numbers for GR are controlled by
the K∨ orbits on P∨(λ).



interlude on induced bundles

Suppose H ⊂ G acts with finitely many orbits on Y . Consider

X = G×H Y = {(g, y) | g ∈ G, y ∈ Y }
/
(gh, y) ∼ (g, hy).

Then G acts via g · (g′, y) = (gg′, y), and the G orbits on X are
bijection with the H orbits on Y ,

H · y 7→ G · (e, y),

and centralizers match: G(e,y) = Hy. So have bijection γ 7→ γ′

LocG(X) = LocH(Y ).

Simple transversality considerations imply isomorphisms of
intersection homology groups (and characteristic cycles),

Mg
γδ = Mg

γ′δ′ .



p-adic langlands parameters

For a split group over F = Qp with finite reside field k = Fp, a
Langlands parameter is roughly a representations

φ : Γ = Gal(F/F ) → G∨.

Choice of F gives a choice of k, and so we get a surjective map

Γ → Gal(k/k) ≃ Ẑ.

The kernel is called the inertia group IF . Consider the preimage
of Z = ⟨x 7→ xp⟩ ⊂ Ẑ; this defines the Weil group of F :

1 → IF → WF → Z → 1.

Weil-Deligne: incorporate the norm map on WF (∥w∥= pn

whenever w maps to n ∈ Z) as follows,

W ′
F = C⋉WF

where wzw−1 =∥w∥. A Langlands parameter is roughly a map

φ : W ′
F → G∨.



unramified p-adic parameters

Enhance the idea of a Galois representation

φ : Γ = Gal(F/F ) → G∨.

Weil group:
1 → IF → WF → Z → 1.

Weil-Deligne:

W ′
F = C⋉WF wzw−1 =∥w∥ .

An unramified Langlands parameter:

φ : W ′
F → G∨.

is one that is trivial on IF . Determined by image of 1
(semisimple element) and Frob (unipotent element).



unramified p-adic parameters, continued

Rescaling and assuming λ real...following Lusztig, the space of
unramified parameter for a split p-adic group consists of pairs{

(λ,N) | λ ∈ g∨ semisimple, N nilpotent
}

satisfying
[λ,N ] = −N.

G∨ acts in the obvious way. If we fix λ, we are then talking
about L∨(λ) = (G∨)λ orbits on g∨−1(λ).

Or, in other words, the space is

XF
λ = G∨ ×L∨(λ) g

∨
−1(λ).

(Compare the ABV space Xλ = G∨ ×K∨ P∨(λ).)

Works perfectly: KL proof of the Deligne-Langlands conjecture
and Lusztig’s generalization to unipotent representations.



classification of unramified irreps

Let GF be a split connected (adjoint) group over F = Qp, λ
real. To (certain) γ ∈ LocG∨(XF

λ ) there is a standard
representations std(γ) with a canonical irreducible subquotient
irr(γ) inducing a bijection

Loc′G∨(XF
λ ) −→ Ĝunram

F,λ

γ 7→ irr(γ)

As characters (or in an appropriate K group), we write

[irr(γ)] =
∑

δ∈Parλ

mγδ [std(δ)].

As before, computing irreducible characters amounts to
computing the integers mγδ.



Lusztig classification of unipotent irreps

Let GF be a split connected (adjoint) group over F = Qp. L: To
γ ∈ LocG∨(XF

λ ) there is a standard representations std(γ) with
a canonical irreducible subquotient irr(γ) inducing a bijection

LocG∨(XF
λ ) −→ Ĝunip

F,λ

γ 7→ irr(γ)

As characters (or in an appropriate K group), we write

[irr(γ)] =
∑

δ∈Parλ

mγδ [std(δ)].

As before, computing irreducible characters amounts to
computing the integers mγδ.



geometric mulitplicities

To each γ, δ ∈ LocG∨(XF
λ ), on can write

[con(γ)] =
∑
δ

Mg,F
γδ [per(δ)].

Lusztig: geometric multiplicities match the representation
theoretic ones, and they are effectively computable,

mF
γδ = ±Mg,F

δγ ,

just like the ABV case. But the effective algorithm is totally
different to implement (Ciubotaru, ...)



the geometric upshot

Fix λ ∈ g∨ semisimple, real integral. Would like a natural
injection

LocG∨(XF
λ ) −→ LocG∨(Xλ)

γ 7→ γ′

that matches geometric multiplicities

[con(γ)] =
∑
δ

Mγδ [per(δ)].

iff

[con(γ′)] =
∑
δ′

Mγδ [per(δ
′)] + other unrelated terms,

and hence representation theoretic multiplicities.



the representation theory upshot i

Fix λ ∈ g∨ semisimple, integral. If we found a natural injection

LocG∨(XF
λ ) −→ LocG∨(Xλ)

γ 7→ γ′

that matches geometric multiplicities, then

[irr(γ)] =
∑
δ

mγδ [std(δ)],

an identity of virtual unipotent representations, iff

[irr(γ′)] =
∑
δ′

mγδ [std(δ
′)] + other unrelated terms,

an identify of virtual Harish-Chandra modules. Beware the
exceptional groups....



the representation theory upshot ii

Fix λ ∈ g∨ semisimple, integral. If we found a natural injection

LocG∨(G∨ ×L∨(λ) g−1(λ)) −→ LocG∨(G∨ ×K∨(λ) P(λ))

γ 7→ γ′

that matches geometric multiplicities, then

[irr(γ)] =
∑
δ

mγδ [std(δ)],

an identity of virtual unipotent representations, iff

[irr(γ′)] =
∑
δ′

mγδ [std(δ
′)] + other unrelated terms,

an identify of virtual Harish-Chandra modules. Beware the
exceptional groups....



the representation theory upshot iii

Fix λ ∈ g∨ semisimple, integral. If we found a natural injection

LocL∨(λ)(g−1(λ)) −→ LocK∨(λ)(P(λ))

γ 7→ γ′

that matches geometric multiplicities, then

[irr(γ)] =
∑
δ

mγδ [std(δ)],

an identity of virtual unipotent representations, iff

[irr(γ′)] =
∑
δ′

mγδ [std(δ
′)] + other unrelated terms,

an identify of virtual Harish-Chandra modules. Beware the
exceptional groups....



main result (ongoing work with barchini)

Theorem

Suppose G = GL(n,C) or Sp(2n,C). Fix an integral semisimple
element λ ∈ g. Write gi for the i-eigenspace of ad(λ). Let L be
the subgroup of G corresponding to g0, and let P denote the
variety of parabolics conjugate to p = ⊕i≥0gi. Set
θ = Ad(exp(iπλ)) and K = Gθ. Then there is an injection

LocL(g−1) −→ LocK(P)

γ 7→ γ′

such that
multiplicity of con(γ) in per(δ)

equals
multiplicity of con(γ′) in per(δ′).



remarks

(1) The GL(n) case is joint with Ciubotaru from about 2010.
(More on this in a moment.) In fact, earlier Lusztig and
Zelvinsky had shown how to embed

LocL(g−1) ↪→ Sn

and match decomposition numbers for highest weight modules
(where there is no possibility of incorporating nontrivial local
systems). The new result is for other classical groups which can
capture those nontrivial local systems.

(2) Similar statements appear to be available for SO(n), but K
depends not only on λ but also on γ. This is needed to account
for the different blocks.

(3) Nothing so simple is possible for the exceptional groups.



a little about the proof...

Start with the GL(n) case, λ integral. Then

k =
∑
i even

gi(λ) ≃ gl(⌊n/2⌋)⊕ gl(⌈n/2⌉)

contains l = g0(λ). No nontrivial local systems, so looking for a
map

{L orbits on g−1} −→ {K orbits on Pλ = G/P (λ)}

Simplest possible idea: find an L-equivariant map,

Φ : g−1 −→ Pλ ≃ G/P (λ)

and define
L ·N 7→ K · Φ(N).

The simplest possible Φ works,

Φ(N) = (1 +N) · p(λ).

Note that exp(N) doesn’t work! So what to do for other
(classical) groups?



so what’s the map in general?

Nothing like Φ(N) = (1 +N) · p exists in general (and can’t).
Want to explain theorem (with Barchini) for

G′ = Sp(2n) ⊂ G = GL(2n), λ ∈ g′ ⊂ g.

1 First step: revisit CT and recognize

K · Φ(g−1) · p ≃ K ×L g−1

in a suitable affine open.

2 Second step: Take subbundle K ×L g′−1 and intersect with
a cleverly chosen copy of G′/P (λ)′ in G/P (λ).

3 Third step: recognize the intersection as K ′ ×L′ g′−1, on one
hand, and (dense in) matching K ′ orbits on P ′ on the
other. That gives the result. Hardest part is showing the
intersection is nonempty, and this requires a different
analysis for SO(n).



example of λ = ρ∨...

Set T = diagonal in G = GL(n,C), λ = ρ∨ ∈ t,

ρ∨ = ((n− 1)/2, (n− 3)/2, . . . ,−(n− 3)/2,−(n− 1)/2)

L(λ) = T , K = GL(⌈n2 ⌉)×GL(⌊n2 ⌋).

g−1 =


0
⋆ 0

⋆
. . .

⋆ 0

 p =


⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆
. . . ⋆

⋆


So T = L(λ) orbits on g1(ρ

∨) are parameterized by subsets S of
the simple roots, and all orbit closures are smooth. The closure
of

K · (1 +NS) · p

is smooth along all other orbits of the form K · (1 +NS′).
This λ = ρ∨ case is generalized to all types with Barchini.


