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The last major unsolved problem…
• …in the representation theory of real reductive Lie groups 𝐺𝐺…

• is that of describing �𝐺𝐺 = {unitary representations of 𝐺𝐺}
• Representations (𝜋𝜋,𝑉𝑉) which preserve a Hilbert space inner product

• E.g., if 𝐺𝐺 is compact then:
• all representations are known (Weyl’s “theorem of the highest weight”)

• all are unitary (Weyl’s “Unitarian trick”, cf. Hurwitz)

• Must decide if a given representation is unitarizable

• Gets harder as group gets less compact

• Split groups like 𝑆𝑆𝑆𝑆 𝑛𝑛,ℝ ,𝐸𝐸8 ℝ are hardest.  E.g.,
• Bargmann (1947): �𝑆𝑆𝑆𝑆(2,ℝ)
• Vogan (1986): �𝑆𝑆𝑆𝑆(𝑛𝑛,ℝ), �𝑆𝑆𝑆𝑆(𝑛𝑛,ℂ)
• Vogan (1994): �𝐺𝐺2(ℝ)

• These are major accomplishments of David Vogan from the period before he retired



The really big goal

• A full understanding of �𝐺𝐺 for any real reductive Lie group 𝐺𝐺

• �𝐸𝐸8(ℝ) would (perhaps?) be nearly as satisfactory.

• Special cases (e.g., “spherical” – has a vector fixed under action of  
maximal compact subgroup) important for number theory.

• Question posed to Vogan at Rutgers’ Faculty Dining Hall (Nov. 2015):
• Are we ever going to see this?

• Vogan’s answer:
• I’d like to see it at least settled for a large, natural class of representations

• For example, those coming up in automorphic forms

• Specifically, Arthur’s unipotent representations
• Very vague folk mythology: are building blocks of the unitary dual



What are Arthur’s unipotent representations?

• Hard question – Arthur describes indirectly
• [ABV] book gives an answer compatible w/ Arthur
• We’d like to identify them
• Should be related to automorphic forms, but very unclear how

• Two parts of the definition [expanded on next slides]:
• Notion of Arthur parameter
• Notion of Arthur packets

• [ABV] proves all major expected properties of these packets aside from 
one:

• UNITARITY!

• Celebrated application of The Fundamental Lemma: Arthur proves unitarity
for classical groups SL(n), SO(n,n), SO(n+1,n), Sp(2n),….

• but not Spin covers

• Main theorem today [Adams-van Leeuwen-M-Vogan]: unitarity proven 
for all real forms of exceptional groups, including 𝑬𝑬𝟖𝟖(ℝ).



Arthur parameters
• Let 𝐺𝐺 = split real group, e.g., 𝑆𝑆𝑆𝑆 2,ℝ , 𝑆𝑆𝑆𝑆 𝑛𝑛,𝑛𝑛 ,𝐸𝐸8 ℝ , …

• Let 𝐺𝐺∨ ℂ = complex points of Langlands dual group, e.g., 𝑃𝑃𝑃𝑃𝑃𝑃 2,ℂ .

• Weil group   𝑊𝑊ℝ = ℂ∗ ⊔ 𝑗𝑗ℂ∗ ⊆ Quaternions*

• Arthur parameter: algebraic homomorphism 𝜓𝜓: 𝑆𝑆𝑆𝑆 2,ℂ × 𝑊𝑊ℝ → 𝐺𝐺∨ ℂ
• + technical hypothesis (irrelevant hereafter)

• Unipotent Arthur parameter: 𝜓𝜓 is trivial on the ℂ∗-factor of 𝑊𝑊ℝ.
• So 𝜓𝜓 𝑗𝑗 2 = 𝜓𝜓 −1 = 1, i.e., 𝜓𝜓(𝑗𝑗) has order 1 or 2.

• Up to conjugacy, determined by 𝜓𝜓(𝑗𝑗) and an algebraic 𝑆𝑆𝑆𝑆(2,ℂ) which commutes with it in 𝐺𝐺∨ ℂ

• Meaning of the 𝑆𝑆𝑆𝑆(2,ℂ) for a representation associated to 𝜓𝜓:
• “how far away from tempered” (not always true anyhow) or 

• “wavefront set”, measures how complicated representations are.
• Also a measure of size of an infinite-dimensional representation [more later]



Nilpotent orbits (≈Jordan canonical form)
• Interesting to think of 𝜓𝜓(𝑆𝑆𝑆𝑆 2,ℂ ) as encoding a nilpotent orbit 𝒪𝒪∨ of 𝐺𝐺∨ ℂ under its 

adjoint action on its Lie algebra 𝔤𝔤∨ ℂ :

• consider differential 𝑑𝑑𝑑𝑑 0 1
0 0 ∈ 𝒪𝒪∨

• Part of an 𝔰𝔰𝔩𝔩2-triple, with neutral element 2𝜆𝜆 ≔ 𝑑𝑑𝑑𝑑 1 0
0 −1 ∈ 𝔞𝔞∨ ≅ 𝔞𝔞∗.

• The adjoint nilpotent orbit 𝒪𝒪∨ has weighted Dynkin diagram determined by 2𝜆𝜆.

• Up to conjugacy, unipotent parameters for split 𝐺𝐺 determined by
• order 1 or 2 element 𝜓𝜓 𝑗𝑗 , and an

• adjoint nilpotent orbit intersecting
{+1 eigenspace of 𝐴𝐴𝐴𝐴(𝜓𝜓 𝑗𝑗 )} = a symmetric subalgebra of 𝔤𝔤∨ ℂ

• More precise information determined by the nilpotent orbit 𝒪𝒪∨:
• its Spaltenstein dual orbit 𝒪𝒪 ⊂ 𝔤𝔤∨(ℂ) is ≈ wavefront set of representations associated to 𝜓𝜓
• This is a measure of size of an infinite-dimensional representation

• Small wavefront set   ⟹ delicate number-theory in automorphic form coefficients.



From unipotent Arthur parameters to packets

• To each parameter, Arthur predicts a packet of interesting unitary representations.

• How to define this packet?

• Arthur: indirectly. Packets must involve stable combinations of characters

• [Adams-Barbasch-Vogan, 1991]: give a definition of packets (for real groups).

• Stability satisfied, but stability isn’t enough to define a packet.

• Only one easy-to-define member of a packet: the “Langlands element”

• quotient of (dominant) principal series with 
infinitesimal character 𝜆𝜆 = 1

2
(weighted Dynkin diagram for 𝒪𝒪∨) ∈ 𝔞𝔞∗

and quadratic character defined by 𝜓𝜓(𝑗𝑗)

• Unlike 𝐿𝐿-packets,  Arthur packets can intersect nontrivially!

• Notion of weak packet (just as useful for unitarity): union of all packets with same 𝜆𝜆 (i.e., same 𝒪𝒪∨)

• atlas software: method to compute weak packets using cell computations, character tables of 
(large!) Weyl groups.



Results for split exceptional groups

• Arthur: settled for many split classical groups using trace formula & fundamental lemma

• 𝐶𝐶 𝒪𝒪 = component group of centralizer of 𝒪𝒪∨ in 𝐺𝐺∨(ℂ) is always abelian

• List of all unipotent Arthur parameters for exceptional groups now known by [Hundley-M]
• 341 total

• 𝐶𝐶(𝒪𝒪) not always abelian (e.g., 𝑆𝑆5), so intricate new phenomena enter

• All unipotent representations for exceptional groups recently computed [Adams-Van 
Leeuwen-M-Vogan]

• Previously studied packets (e.g., minimal or next-to-minimal representation) 
tend to be singletons = {Langlands element}, but many are big

• [M- 2012], [Hundley-M 2019] showed the Langlands element of the packet is always 
unitary, using Eisenstein series [more later] and, in some cases, the atlas software.

• Arthur: all packet elements should have automorphic realizations, but it is not clear if as cusp forms or Eisenstein 
series residues.



Census of unipotent representations



Three ways to show unitarity
1. atlas software: algorithm of Adams-van Leeuwen-Trapa-Vogan

• Determines unitarity, but can require huge amounts of time and memory

• Works very well for most of the examples on the census

• Probably cannot help for very large orbits 𝒪𝒪∨

• Example: trivial representation on 𝐸𝐸7 took several days and hundreds of GB of RAM.  Only 
became possible in 2021.

2. “Golf” – an analysis of induction and reducibility after deformation [Vogan]
• Relies on the fact that the 𝐸𝐸8 root lattice is absurdly dense

• Best sphere packing [Viazovska], kissing number [Odlyzko-Sloane]

• “Universally Optimal” under many measures [Cohn-Kumar-M-Radchenko-Viazovska]

• so each representation has lots of neighbors that might be unitary 

• Unitarity might extend if no reducibility occurs in between.

3. Eisenstein series/string theory handles atlas’ hardest cases



Who ordered string theory?
• Background:

• Basic idea [outline]:
• String theory posits low-energy corrections to general relativity

• [Green-M-Vanhove-Russo]: the first terms are Eisenstein series.

• Like all automorphic forms, they generate representations

• [Green-M-Vanhove]: these are the hardest unipotent representations for atlas.

• String theory gives serious growth constraints

• These constraints imply the Eisenstein series ∈ 𝐿𝐿2(Γ\𝐺𝐺), hence are unitarity!

• This approach can be generalized and made rigorous.

Green + Vanhove +… : studied 4-graviton scattering 
amplitude in 𝑁𝑁 = 8 (maximally symmetric) type IIB 
string theory.

Feynman diagram

What is the probability 
distribution of the outgoing 
particles?  How does it 
depend on the coupling 
constants?  Automorphically!



4-graviton scattering amplitude
• Has contributions from “analytic” and “non-analytic” parts:

• The analytic part has an expansion in terms of momenta:

• Supergravity: 𝜙𝜙𝑑𝑑+1 naturally lives inside a symmetric space 𝐸𝐸𝑑𝑑+1/𝐾𝐾𝑑𝑑+1

• String theory: 𝜙𝜙𝑑𝑑+1 is also invariant under a discrete subgroup Γ ⊂ 𝐸𝐸𝑑𝑑+1

• Challenge: identify the automorphic coefficients ℰ 𝑝𝑝,𝑞𝑞
𝐷𝐷 (𝜙𝜙𝑑𝑑+1)

Einstein-Hilbert term

Low energy correction terms



Identification of ℰ(0,0) and ℰ(1,0)
• Using the differential equations and relations between physics in 

dimensions D and D+1 (pertubative limit, M-theory limit, and 
decompatification limit), some asymptotics can be understood.

• [Green-M-Vanhove-Russo] found chain of solutions on different 
duality groups in terms of Eisenstein series.  

(the constant function is the value at s=0 of any of these series, so it too is an Eisenstein series).  

The result:

Simpler



What are Eisenstein series?  First, 𝑆𝑆𝑆𝑆(2)
• Eisenstein introduced the holomorphic modular forms of Im(𝑧𝑧)>0

�
𝑚𝑚,𝑛𝑛 ∈ℤ2
𝑚𝑚,𝑛𝑛 ≠(0,0)

𝑚𝑚𝑚𝑚 + 𝑛𝑛 −𝑘𝑘

• Siegel defined the non-holomorphic analog for 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖,𝑦𝑦 > 0

𝐸𝐸 𝑥𝑥 + 𝑖𝑖𝑖𝑖, 𝑠𝑠 ≔ �
𝑚𝑚,𝑛𝑛 ∈ℤ2
𝑚𝑚,𝑛𝑛 ≠(0,0)

𝑦𝑦𝑠𝑠

𝑚𝑚𝑚𝑚 + 𝑛𝑛 2𝑠𝑠

• The latter has a Fourier expansion
𝐸𝐸 𝑥𝑥 + 𝑖𝑖𝑖𝑖, 𝑠𝑠 = 𝑦𝑦𝑠𝑠 + 𝑐𝑐 2𝑠𝑠 − 1 𝑦𝑦1−𝑠𝑠 + �

𝑛𝑛≠0

𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋 𝐶𝐶𝑛𝑛(𝑦𝑦, 𝑠𝑠)

• where 𝑐𝑐 𝑠𝑠 ,𝐶𝐶𝑛𝑛(𝑦𝑦, 𝑠𝑠) given by explicit number-theoretic formulas

• Growth controlled by constant term 𝑦𝑦𝑠𝑠 + 𝑐𝑐 2𝑠𝑠 − 1 𝑦𝑦1−𝑠𝑠

• Application: Residue at 𝑠𝑠 = 1 is constant
• This is square-integrable over modular fundamental domain vs. 𝑦𝑦−2𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑



For more general groups
• First consider a spherical principal series 

𝑉𝑉𝜆𝜆 = 𝑓𝑓:𝐺𝐺 → ℂ 𝑓𝑓 𝑛𝑛𝑛𝑛𝑔𝑔 = 𝑒𝑒(𝜆𝜆+𝜌𝜌)(log 𝑎𝑎 ) 𝑓𝑓(𝑔𝑔)},
• For 𝜆𝜆 − 𝜌𝜌 strictly dominant (“Godement range”) define

𝐸𝐸 𝜆𝜆,𝑔𝑔 = �
𝛾𝛾∈𝐵𝐵(ℤ)\𝐺𝐺(ℤ)

𝑒𝑒(𝜆𝜆+𝜌𝜌)(𝐻𝐻 𝛾𝛾𝛾𝛾 )

• Satisfies functional equations 𝐸𝐸 𝜆𝜆,𝑔𝑔 = 𝑀𝑀 𝑤𝑤, 𝜆𝜆 𝐸𝐸(𝑤𝑤𝑤𝑤,𝑔𝑔) where

and 𝑤𝑤 ∈ 𝑊𝑊= Weyl group.

• Langlands’ constant term formula
�
𝑁𝑁 ℤ \𝑁𝑁(ℝ)

𝐸𝐸 𝜆𝜆,𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑 = �
𝑤𝑤∈𝑊𝑊

𝑀𝑀(𝑤𝑤, 𝜆𝜆) 𝑒𝑒(𝑤𝑤𝑤𝑤+𝜌𝜌)(𝐻𝐻 𝑔𝑔 )



Residues at special points
• Previous 𝑆𝑆𝑆𝑆(2) example was at 𝜆𝜆 = 𝜌𝜌
• In general 𝐸𝐸 −𝜌𝜌,𝑔𝑔 ≡ 1 (constant function for any 𝐺𝐺)
• Residual spectrum gets very interesting and intricate for other groups

• Get L2 residue if nontrivial contributions satisfy 𝒘𝒘𝒘𝒘,𝜶𝜶𝒊𝒊∨ < 𝟎𝟎,∀𝒊𝒊 (Langlands’ condition).

• [M-,2012]: specialize deformation 𝜆𝜆 = 2𝑠𝑠𝜛𝜛𝑗𝑗 − 𝜌𝜌 to compute constant terms.

• Corresponds to maximal parabolic Eisenstein series induced from trivial representation.

• Actually, all of Arthur’s spherical examples have this form.

• Later [M-Hundley] showed the “basepoint” representation in each Arthur packet is unitary

• hardest one from the point of view of atlas

• Key point: The inner products 𝜆𝜆,𝛼𝛼𝑖𝑖∨ = −1 for 𝑖𝑖 ≠ 𝑗𝑗.  This rules out the contributions for nearly all 𝑤𝑤∈𝑊𝑊.  
(Most 𝑀𝑀(𝑤𝑤, λ) = 0 since 𝑐𝑐(−1) = 0.)

• Consequence: unitarity (since 𝐿𝐿2 defines Hilbert space structure) of all spherical Arthur packet members



Unitarity [Adams-van Leeuwen-M-Vogan] 
• Compute all unipotent representations for exceptional groups (1,465)

• Use atlas algorithm [Adams-van Leeuwen-Trapa-Vogan] to show 1,435 are accessible 
(with big machines), verified to be unitary.

• Of the remaining 30, 22 are Langlands elements

• Known to be unitary by [Hundley-M]

• Vogan’s “Golf” on the back 8:
• uses parabolic and cohomological induction from unipotents on smaller groups
• gets nearby unitary representations

• choice of what to induce is influenced by string theory construction

• these nearby induced, unitary representations are deformed to the one we want
• deformation potentially crosses a root-wall of reducibility
• atlas computation: it stays irreducible, though

• Therefore unitarity doesn’t change along the deformation.

• Conclusion: all unipotent representations of exceptional groups are unitary
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