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Problem of Unitary Dual

Let G be a complex connected reductive algebraic group. Write

Πu,sph(G ) = {irred unitary spherical G -representations}.

Problem of the Unitary Dual (complex spherical case)

Parameterize the set Πu,sph(G ).

Some history:

GL(2) (Gelfand-Naimark, 1947)

SL(3), Sp(4), G2 (Duflo, 1979)

GL(n) (Vogan, 1986)

Sp(2n), SO(n) (Barbasch, 1989)

Goal: give a conjectural description of Πu,sph(G ) for all G .
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Harish-Chandra bimodules

A Harish-Chandra bimodule is a U(g)-bimodule V such
that the adjoint action of g

g× V → V , (ξ, v) 7→ ξv − vξ

integrates to a rational (i.e. locally finite) G -action.

A HC bimodule is spherical if it contains a nonzero fixed
vector for the adjoint G -action.

Write

HC(G ) = {irred HC bimodules}
HCsph(G ) = {irred spherical HC bimodules}
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Unitary Harish-Chandra Bimodules

Fix a compact real form σ : g → g. Induces a
conjugate-linear algebra involution σ : U(g) → U(g).

A Hermitian form ⟨ , ⟩ on a HC bimod V is invariant if

⟨xvy ,w⟩ = ⟨v , σ(y)wσ(x)⟩, x , y ∈ U(g), v ,w ∈ V .

V is Hermitian if it admits a non-degenerate invariant
Hermitian form.

V is unitary if it admits a positive-definite invariant
Hermitian form.

Write

HCu(G ) = {irred unitary HC bimodules}
HCu,sph(G ) = {irred spherical unitary HC bimodules}
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Harish-Chandra Bimodules

Theorem (Harish-Chandra, Duflo,...)

Πu,sph(G ) Πsph(G ) Π(G )

HCu,sph(G ) HCsph(G ) HC(G )

h∗/W
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Problem of Unitary Dual (Take 2)

Thus, we can regard Πu,sph(G ) as a W -invariant subset of h∗.

Problem of Unitary Dual (algebraic formulation, complex
spherical case)

Compute the W -invariant subset Πu,sph(G ) ⊂ h∗.

Remark

It is useful and customary to restrict to the case of ‘real
infinitesimal character’, i.e. X ∗(H)⊗Z R ⊂ h∗. One can easily
reduce to this case via unitary induction.
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What does Πu,sph(G ) look like?

Some general features of Πu,sph(G ):

It is a closed subset of h∗ (in the Euclidean topology).

It is contained in the closed ball B(0, |ρ|) (probably a
tighter bound is possible).

It is a union of facets defined by certain hyperplanes in h∗

(roughly: affine co-root hyperplanes).

Ok, but what does it look like?
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SL(2,C)
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Sp(4,C)
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G2(C)
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How should we understand these pictures?

(1) Each picture contains a finite set of distinguished points:
For each G , there is a finite set of reps (e.g. trivial,
oscillator rep) called unipotent representations, which are
unitary for magical reasons.

(2) Each picture contains copies of the pictures for its Levis:
If L ⊂ G is a Levi subgroup and XL ∈ Πu,sph(L), then
IndGP XL is unitary (and hence also its spherical summand).

(3) Each picture is closed under certain ‘deformations’: If
X ∈ Πu,sph(G ) belongs to a ‘complementary series’ C ,
then C ⊂ Πu,sph(G ).

Vogan’s Philosophy on the Unitary Dual (‘Orange Book’, 1987)

Every representation in Πu,sph(G ) can be obtained by applying
operations (2) and (3) to a unipotent representation (1) of a
Levi subgroup L ⊂ G .
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Vogan’s Philosophy

In order to turn Vogan’s philosophy into a precise mathematical
conjecture, we need:

a precise (and suitably general) definition of ‘unipotent’,
and

a precise (and suitably general) definition of
‘complementary series’.

Claim: both goals are most naturally accomplished using the
language of filtered quantizations of nilpotent covers.
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Nilpotent covers

A nilpotent cover for G is a finite, connected,
G -equivariant cover of a nilpotent co-adjoint G -orbit.
Write

Cov(G ) = {nilpotent covers for G}/ ∼

If O is a nilpotent orbit and e ∈ O, then covers of O are
parameterized by conjugacy classes of subgroups of
A(O) = ZG (e)/ZG (e)

◦.

Example: SL(2,C)

Two nilpotent orbits: {0} and O = G ·
(
0 1
0 0

)
.

A({0}) = 1. No nontrivial covers.

A(O) = Z2. One nontrivial (two-fold) cover.
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Birational induction of nilpotent covers

For each Levi subgroup L ⊂ G , there is a map

BindGL : Cov(L) → Cov(G )

called birational induction.
A cover is said to be birationally rigid if it cannot be
obtained via birational induction from a proper Levi
subgroup.
A birational induction datum is a pair (L, ÕL) consisting of
a Levi subgroup L ⊂ G and a birationally rigid nilpotent
cover ÕL. Write

Ψ(G ) = {birational induction data (L, ÕL)}

Proposition (Losev, Matvieievskyi)

Bind : Ψ(G )/G
∼−→ Cov(G ).
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Quantizations of nilpotent covers

The ring of regular functions C[Õ] is a graded Poisson algebra.
Can define filtered quantizations of C[Õ]. Write

Q(Õ) := {filtered quantizations of C[Õ]}/ ∼

Choose (L, ÕL) ∈ Ψ(G ) corresponding to Õ, and define

h(Õ) := z(l ∩ [g, g])∗

Theorem (Losev, Losev-MB-Matvieievskyi)

There is a (finite) subgroup W (Õ) ⊂ NG (L)/L and a canonical
bijection

h(Õ)/W (Õ)
∼−→ Q(Õ), λ 7→ Aλ(Õ)
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Example

Let P = LU ⊂ G be a parabolic subgroup.

There is a unique open G -orbit

Õ ⊂ T ∗(G/P).

Image of the moment map T ∗(G/P) → N is the closure
of a nilpotent orbit (Richardson orbit for P).

Õ is a nilpotent cover, birationally induced from (L, {0}).
h(Õ) = z(l ∩ [g, g])∗.

Given λ ∈ h(Õ), get TDO Dλ+ρ(u)
G/P on G/P. Then

Aλ(Õ) = Γ(G/P,Dλ+ρ(u)
G/P )
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Quantizations of nilpotent covers

Proposition (Losev-MB-Matvieievskyi)

For each Aλ(Õ) ∈ Q(Õ), there is a unique quantum
co-moment map

Φ : U(g) → Aλ(Õ)

such that Φ|z(g) = 0. The map Φ turns Aλ(Õ) into a
finite-length, spherical Harish-Chandra bimodule for U(g).
Write

Iλ(Õ) := ker (Φ).

This is a completely prime, primitive ideal.

Definition (Losev-MB-Matvieievskyi)

The unipotent ideal attached to Õ is I0(Õ).
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Infinitesimal characters of quantizations of
nilpotent covers

Take Õ ∈ Cov(G ) corresponding to (L, ÕL) ∈ Ψ(G ).

For each Aλ(Õ) ∈ Q(Õ), write

γλ(Õ) = infl char of Iλ(Õ) ∈ h∗/W .

Lemma (Losev-MB-Matvieievskyi)

γλ(Õ) = γ0(ÕL) + λ.

This reduces the calculation of γλ(Õ) to the calculation of
γ0(Õ) for birationally rigid covers. The latter calculation was
carried out in Losev-MB-Matvieievksyi (classical groups) and
MB-Matvieievskyi (spin and exceptional groups).
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Simple quantizations of nilpotent covers

When is Aλ(Õ) a simple algebra?

Theorem (Losev-MB-Matvieievskyi)

The algebra Aλ(Õ) is simple if and only if the ideal Iλ(Õ)
is maximal.

The ideal Iλ(Õ) is maximal if and only if γλ(Õ) satisfies a
straightforward combinatorial condition.

This combinatorial condition is satisfied in an open subset
of h(Õ) (including 0).

Examples later...
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Real structures on quantizations of nilpotent covers

Let σ be a compact form of g.

If O is a nilpotent orbit, then σ preserves O, induces a real
form σ on C[O].

A cover Õ is said to be relevant if it is birationally induced
from a nilpotent orbit.

If Õ is relevant, then σ induces a real form σ on C[Õ].

A quantization Aλ(Õ) of a relevant cover is real if σ lifts
to a (necessarily unique) real form on Aλ(Õ).

If Õ is relevant, then Aλ(Õ) is real if and only if

−λ̄ ∈ W (Õ)λ
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Hermitian bimodules for real quantizations of
nilpotent covers

Let Aλ(Õ) be a real quantization of a relevant cover and let V
be a Harish-Chandra Aλ(Õ)-bimodule.

A Hermitian form ⟨ , ⟩ on V is invariant if

⟨xvy ,w⟩ = ⟨v , σ(y)wσ(x)⟩, x , y ∈ Aλ(Õ), v ,w ∈ V .

V is Hermitian if it admits a non-degenerate invariant
Hermitian form.

V is unitary if it admits a positive-definite invariant
Hermitian form.

If V is Hermitian/unitary as a Aλ(Õ) bimodule, it is
Hermitian/unitary as a U(g)-bimodule.

If Φ : U(g) → Aλ(Õ) is surjective, then the converse is
also true.
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Hermitian quantizations of nilpotent covers

Let Aλ(Õ) be a real quantization of a relevant cover.

Aλ(Õ) contains a unique copy of the trivial
representation. Consider the projection

η : Aλ(Õ) → C

Define a Hermitian form on Aλ(Õ) by

⟨x , y⟩ := η(xσ(y))

Proposition

⟨ , ⟩ is invariant.
⟨ , ⟩ is the unique invariant Hermitian form on Aλ(Õ).

⟨ , ⟩ is non-degenerate if and only if Aλ(Õ) is simple.
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Induction of quantizations of nilpotent covers

Suppose Õ corresponds to (L, ÕL) ∈ Ψ(G ). Choose a Levi
subgroup M ⊂ G containing L. Define

ÕM := BindML ÕL ∈ Cov(M).

Can define parabolic induction for filtered quantizations

IndGM : Q(ÕM) → Q(Õ).

Corresponds to the natural inclusion, on the level of parameters

h(ÕM) = z(l ∩ [m,m])∗ ↪→ z(l ∩ [g, g])∗ = h(Õ).

If Aλ(ÕM) is real, then IndGM Aλ(ÕM) is real.

If Aλ(ÕM) is unitary, then IndGM Aλ(ÕM) may not be
Hermitian (i.e. simple), but if it is Hermitian, it is
automatically unitary.
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Complementary series for quantizations of
nilpotent covers

Let Õ be a relevant cover. Write:

Q(Õ)

∪

QR(Õ) = {real quantizations of C[Õ]}
∪

Qh(Õ) = {Hermitian quantizations of C[Õ]}
∪

Qu(Õ) = {unitary quantizations of C[Õ]}

Write hR(Õ), hh(Õ), hu(Õ) for the corresponding parameter
spaces. Recall

Qh(Õ) = {A ∈ QR(Õ) | A simple}
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Complementary series for quantizations of
nilpotent covers

The set hh(Õ) decomposes into connected components. If
S ⊂ hh(Õ), define

C (S) = union of all connected components

which meet S nontrivially.

This induces an operation on Qh(Õ).

Proposition

If S ⊂ Qu(Õ), then C (S) ⊂ Qu(Õ).

Note: some quantizations in the family C (S) may be reducible
as U(g)-bimodules. So C (S) may extend the usual
complementary series.
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Conjectures

Conjecture

Suppose Õ is relevant. Then

Qu(Õ) = C (Qh(Õ) ∩
⋃
M⊇L

IndGM Qu(ÕM)).

Conjecture

Πu,sph(G ) =
⋃

Õ relevant

{U(g)/Iλ(Õ) | Aλ(Õ) ∈ Qu(Õ)}.
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Sp(4,C): principal orbit

Figure: h(Õ)
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Sp(4,C): principal orbit

Figure: hR(Õ)
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Sp(4,C): principal orbit

Figure: hh(Õ)
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Sp(4,C): principal orbit

Figure: hh(Õ)
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Sp(4,C): principal orbit

Figure: hu(Õ)
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Sp(4,C): subregular orbit

Figure: h(Õ)
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Sp(4,C): subregular orbit

Figure: hR(Õ)
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Sp(4,C): subregular orbit

Figure: hh(Õ)
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Sp(4,C): subregular orbit

Figure: hh(Õ)
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Sp(4,C): subregular orbit

Figure: hu(Õ)
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Sp(4,C): double cover of subregular orbit

Figure: h(Õ)
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Sp(4,C): double cover of subregular orbit

Figure: hR(Õ)
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Sp(4,C): double cover of subregular orbit

Figure: hh(Õ)
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Sp(4,C): double cover of subregular orbit

Figure: hu(Õ)
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Sp(4,C): minimal orbit

Figure: h(Õ)
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Sp(4,C): minimal orbit

Figure: hR(Õ)
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Sp(4,C): minimal orbit

Figure: hh(Õ)
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Sp(4,C): minimal orbit

Figure: hu(Õ)
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Sp(4,C): zero orbit

Figure: h(Õ)
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Sp(4,C): zero orbit

Figure: hR(Õ)
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Sp(4,C): zero orbit

Figure: hh(Õ)
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Sp(4,C): zero orbit

Figure: hu(Õ)
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Sp(4,C): putting it all together
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Sp(4,C): putting it all together
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G2(C): principal orbit

Figure: h(Õ)
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G2(C): principal orbit

Figure: hR(Õ)
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G2(C): principal orbit

Figure: hh(Õ)
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G2(C): principal orbit

Figure: hh(Õ)
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G2(C): principal orbit

Figure: hu(Õ)
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G2(C): subregular orbit

Figure: h(Õ)
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G2(C): subregular orbit

Figure: hR(Õ)
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G2(C): subregular orbit

Figure: hh(Õ)
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G2(C): subregular orbit

Figure: hh(Õ)
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G2(C): subregular orbit

Figure: hu(Õ)
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G2(C): three-fold cover of subregular orbit

Figure: h(Õ)
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G2(C): three-fold cover of subregular orbit

Figure: hR(Õ)
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G2(C): three-fold cover of subregular orbit

Figure: hh(Õ)
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G2(C): three-fold cover of subregular orbit

Figure: hh(Õ)
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G2(C): three-fold cover of subregular orbit

Figure: hu(Õ)
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G2(C): 8-dim rigid orbit

Figure: h(Õ)
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G2(C): 8-dim rigid orbit

Figure: hR(Õ)
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G2(C): 8-dim rigid orbit

Figure: hh(Õ)
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G2(C): 8-dim rigid orbit

Figure: hu(Õ)
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G2(C): minimal orbit

Figure: h(Õ)
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G2(C): minimal orbit

Figure: hR(Õ)
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G2(C): minimal orbit

Figure: hh(Õ)
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G2(C): minimal orbit

Figure: hu(Õ)
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G2(C): zero orbit

Figure: h(Õ)



Some
Comments on
the Structure
of the Unitary

Dual

Lucas
Mason-Brown

G2(C): zero orbit

Figure: hR(Õ)
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G2(C): zero orbit

Figure: hh(Õ)
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G2(C): zero orbit

Figure: hu(Õ)
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G2(C): putting it all together
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G2(C): putting it all together


