Some
Comments on
the Structure
of the Unitary
Dual

Lucas Mason-Brown

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

Sep 2022

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Problem of Unitary Dual

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Let *G* be a complex connected reductive algebraic group. Write $\Pi_{u.sph}(G) = \{\text{irred unitary spherical } G\text{-representations}\}.$

Problem of the Unitary Dual (complex spherical case)

Parameterize the set $\Pi_{u,sph}(G)$.

Some history:

- GL(2) (Gelfand-Naimark, 1947)
- SL(3), Sp(4), G₂ (Duflo, 1979)
- GL(*n*) (Vogan, 1986)
- Sp(2*n*), SO(*n*) (Barbasch, 1989)

Goal: give a conjectural description of $\Pi_{u,sph}(G)$ for all G.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Harish-Chandra bimodules

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown A Harish-Chandra bimodule is a U(g)-bimodule V such that the adjoint action of g

$$\mathfrak{g} imes V o V, \qquad (\xi, \mathbf{v}) \mapsto \xi \mathbf{v} - \mathbf{v} \xi$$

integrates to a rational (i.e. locally finite) G-action.

• A HC bimodule is *spherical* if it contains a nonzero fixed vector for the adjoint *G*-action.

Write

 $HC(G) = \{ \text{irred HC bimodules} \}$ $HC_{sph}(G) = \{ \text{irred spherical HC bimodules} \}$

Unitary Harish-Chandra Bimodules

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown ■ Fix a compact real form σ : g → g. Induces a conjugate-linear algebra involution σ : U(g) → U(g).

• A Hermitian form \langle , \rangle on a HC bimod V is *invariant* if

 $\langle xvy,w\rangle = \langle v,\sigma(y)w\sigma(x)\rangle, \qquad x,y\in U(\mathfrak{g}), \ v,w\in V.$

- *V* is *Hermitian* if it admits a non-degenerate invariant Hermitian form.
- *V* is *unitary* if it admits a positive-definite invariant Hermitian form.
- Write

 $HC_u(G) = \{ \text{irred unitary HC bimodules} \}$ $HC_{u,sph}(G) = \{ \text{irred spherical unitary HC bimodules} \}$

Harish-Chandra Bimodules

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

Theorem (Harish-Chandra, Duflo,...)

$$\Pi_{u,sph}(G) \longleftrightarrow \Pi_{sph}(G) \longleftrightarrow \Pi(G)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$HC_{u,sph}(G) \longleftrightarrow HC_{sph}(G) \longleftrightarrow HC(G)$$

$$\uparrow$$

$$\mathfrak{h}^*/W$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem of Unitary Dual (Take 2)

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Thus, we can regard $\Pi_{u,sph}(G)$ as a *W*-invariant subset of \mathfrak{h}^* .

Problem of Unitary Dual (algebraic formulation, complex spherical case)

Compute the *W*-invariant subset $\Pi_{u,sph}(G) \subset \mathfrak{h}^*$.

Remark

It is useful and customary to restrict to the case of 'real infinitesimal character', i.e. $X^*(H) \otimes_{\mathbb{Z}} \mathbb{R} \subset \mathfrak{h}^*$. One can easily reduce to this case via unitary induction.

What does $\Pi_{u,sph}(G)$ look like?

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Some general features of $\Pi_{u,sph}(G)$:

- It is a *closed* subset of \mathfrak{h}^* (in the Euclidean topology).
- It is contained in the closed ball B(0, |ρ|) (probably a tighter bound is possible).
- It is a union of facets defined by certain hyperplanes in h^{*} (roughly: affine co-root hyperplanes).

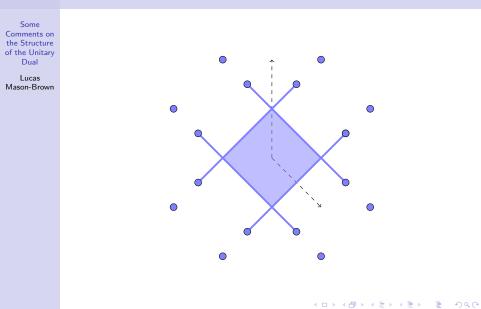
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ok, but what does it look like?

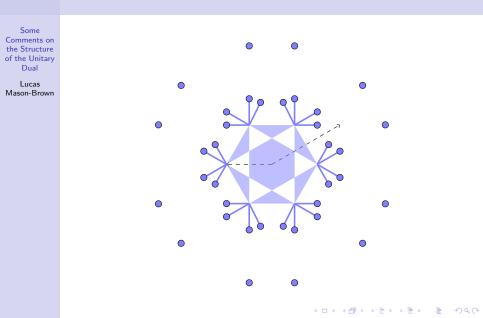
	$\mathrm{SL}(2,\mathbb{C})$			
Some Comments on the Structure of the Unitary Dual Lucas Mason-Brown		< O	•	

・ロ・・聞・・聞・・聞・ しゃくの

 $Sp(4, \mathbb{C})$



$G_2(\mathbb{C})$



How should we understand these pictures?

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

- Each picture contains a finite set of distinguished points: For each G, there is a finite set of reps (e.g. trivial, oscillator rep) called *unipotent representations*, which are unitary for magical reasons.
- (2) Each picture contains copies of the pictures for its Levis: If $L \subset G$ is a Levi subgroup and $X_L \in \prod_{u,sph}(L)$, then $\operatorname{Ind}_P^G X_L$ is unitary (and hence also its spherical summand).
- (3) Each picture is closed under certain 'deformations': If $\overline{X \in \Pi_{u,sph}(G)}$ belongs to a 'complementary series' C, then $C \subset \Pi_{u,sph}(G)$.

Vogan's Philosophy on the Unitary Dual ('Orange Book', 1987)

Every representation in $\Pi_{u,sph}(G)$ can be obtained by applying operations (2) and (3) to a unipotent representation (1) of a Levi subgroup $L \subset G$.

Vogan's Philosophy

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown In order to turn Vogan's philosophy into a precise mathematical conjecture, we need:

- a precise (and suitably general) definition of 'unipotent', and
- a precise (and suitably general) definition of 'complementary series'.

Claim: both goals are most naturally accomplished using the language of *filtered quantizations of nilpotent covers*.

Nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown A *nilpotent cover* for G is a finite, connected,
 G-equivariant cover of a nilpotent co-adjoint G-orbit.
 Write

 $Cov(G) = {nilpotent covers for G} / \sim$

 If O is a nilpotent orbit and e ∈ O, then covers of O are parameterized by conjugacy classes of subgroups of A(O) = Z_G(e)/Z_G(e)°.

Example: $SL(2, \mathbb{C})$

Two nilpotent orbits: $\{0\}$ and $\mathbb{O} = G \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

- $A(\{0\}) = 1$. No nontrivial covers.
- $A(\mathbb{O}) = \mathbb{Z}_2$. One nontrivial (two-fold) cover.

Birational induction of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

For each Levi subgroup
$$L \subset G$$
, there is a map
 $\operatorname{Bind}_L^G : \operatorname{Cov}(L) \to \operatorname{Cov}(G)$

called birational induction.

- A cover is said to be *birationally rigid* if it cannot be obtained via birational induction from a proper Levi subgroup.
- A birational induction datum is a pair (L, O
 L) consisting of a Levi subgroup L ⊂ G and a birationally rigid nilpotent cover O
 L. Write

 $\Psi(G) = \{ \text{birational induction data } (L, \widetilde{\mathbb{O}}_L) \}$

Proposition (Losev, Matvieievskyi)

Bind : $\Psi(G)/G \xrightarrow{\sim} Cov(G)$.

Quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown The ring of regular functions $\mathbb{C}[\widetilde{\mathbb{O}}]$ is a graded Poisson algebra. Can define *filtered quantizations* of $\mathbb{C}[\widetilde{\mathbb{O}}]$. Write

$$\begin{split} Q(\widetilde{\mathbb{O}}) &:= \{ \text{filtered quantizations of } \mathbb{C}[\widetilde{\mathbb{O}}] \} / \sim \\ \text{Choose } (L, \widetilde{\mathbb{O}}_L) \in \Psi(G) \text{ corresponding to } \widetilde{\mathbb{O}}, \text{ and define} \\ \\ \mathfrak{h}(\widetilde{\mathbb{O}}) &:= \mathfrak{z}(\mathfrak{l} \cap [\mathfrak{g}, \mathfrak{g}])^* \end{split}$$

Theorem (Losev, Losev-MB-Matvieievskyi)

There is a (finite) subgroup $W(\widetilde{\mathbb{O}}) \subset N_G(L)/L$ and a canonical bijection

$$\mathfrak{h}(\widetilde{\mathbb{O}})/W(\widetilde{\mathbb{O}}) \xrightarrow{\sim} Q(\widetilde{\mathbb{O}}), \qquad \lambda \mapsto \mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$$

Example

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

- Let $P = LU \subset G$ be a parabolic subgroup.
- There is a unique open G-orbit

$$\widetilde{\mathbb{O}} \subset T^*(G/P).$$

- Image of the moment map T^{*}(G/P) → N is the closure of a nilpotent orbit (Richardson orbit for P).
- Given $\lambda \in \mathfrak{h}(\widetilde{\mathbb{O}})$, get TDO $\mathcal{D}_{G/P}^{\lambda+\rho(\mathfrak{u})}$ on G/P. Then

$$\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}}) = \Gamma(G/P, \mathcal{D}_{G/P}^{\lambda+
ho(\mathfrak{u})})$$

Quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

Proposition (Losev-MB-Matvieievskyi)

For each $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}}) \in Q(\widetilde{\mathbb{O}})$, there is a *unique* quantum co-moment map

$$\Phi: U(\mathfrak{g})
ightarrow \mathcal{A}_\lambda(\widetilde{\mathbb{O}})$$

such that $\Phi|_{\mathfrak{z}(\mathfrak{g})} = 0$. The map Φ turns $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ into a finite-length, spherical Harish-Chandra bimodule for $U(\mathfrak{g})$. Write

$$I_{\lambda}(\widetilde{\mathbb{O}}) := \ker(\Phi).$$

This is a completely prime, primitive ideal.

Definition (Losev-MB-Matvieievskyi)

The *unipotent ideal* attached to $\widetilde{\mathbb{O}}$ is $I_0(\widetilde{\mathbb{O}})$.

Infinitesimal characters of quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

Take
$$\widetilde{\mathbb{O}} \in \text{Cov}(G)$$
 corresponding to $(L, \widetilde{\mathbb{O}}_L) \in \Psi(G)$
For each $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}}) \in Q(\widetilde{\mathbb{O}})$, write
 $\gamma_{\lambda}(\widetilde{\mathbb{O}}) = \text{infl char of } I_{\lambda}(\widetilde{\mathbb{O}}) \in \mathfrak{h}^*/W.$

Lemma (Losev-MB-Matvieievskyi)

 $\gamma_{\lambda}(\widetilde{\mathbb{O}}) = \gamma_0(\widetilde{\mathbb{O}}_L) + \lambda.$

This reduces the calculation of $\gamma_{\lambda}(\widetilde{\mathbb{O}})$ to the calculation of $\gamma_0(\widetilde{\mathbb{O}})$ for birationally rigid covers. The latter calculation was carried out in Losev-MB-Matvieievksyi (classical groups) and MB-Matvieievskyi (spin and exceptional groups).

Simple quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown When is $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ a simple algebra?

Theorem (Losev-MB-Matvieievskyi)

- The algebra A_λ(Õ) is simple if and only if the ideal I_λ(Õ) is maximal.
- The ideal I_λ(Õ) is maximal if and only if γ_λ(Õ) satisfies a straightforward combinatorial condition.
- This combinatorial condition is satisfied in an open subset of h(˜) (including 0).

Examples later...

Real structures on quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

- Let σ be a compact form of \mathfrak{g} .
- If O is a nilpotent orbit, then σ preserves O, induces a real form σ on C[O].
- A cover $\widehat{\mathbb{O}}$ is said to be *relevant* if it is birationally induced from a nilpotent orbit.
- If $\widetilde{\mathbb{O}}$ is relevant, then σ induces a real form σ on $\mathbb{C}[\widetilde{\mathbb{O}}]$.
- A quantization A_λ(Õ) of a relevant cover is *real* if σ lifts to a (necessarily unique) real form on A_λ(Õ).
- If $\widetilde{\mathbb{O}}$ is relevant, then $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ is real if and only if

$$-ar\lambda\in W(\widetilde{\mathbb{O}})\lambda$$

Hermitian bimodules for real quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Let $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ be a real quantization of a relevant cover and let V be a Harish-Chandra $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ -bimodule.

• A Hermitian form \langle , \rangle on V is *invariant* if

 $\langle xvy, w \rangle = \langle v, \sigma(y)w\sigma(x) \rangle, \qquad x, y \in \mathcal{A}_{\lambda}(\widetilde{\mathbb{O}}), \ v, w \in V.$

- *V* is *Hermitian* if it admits a non-degenerate invariant Hermitian form.
- V is unitary if it admits a positive-definite invariant Hermitian form.
- If V is Hermitian/unitary as a A_λ(Õ) bimodule, it is Hermitian/unitary as a U(g)-bimodule.
- If $\Phi : U(\mathfrak{g}) \to \mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ is *surjective*, then the converse is also true.

Hermitian quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Let A_λ(𝔅) be a real quantization of a relevant cover.
 A_λ(𝔅) contains a *unique* copy of the trivial representation. Consider the projection

$$\eta:\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})\to\mathbb{C}$$

Define a Hermitian form on
$$\mathcal{A}_\lambda(\widetilde{\mathbb{O}})$$
 by

$$\langle x, y \rangle := \eta(x\sigma(y))$$

Proposition

- $\langle \ , \ \rangle$ is invariant.
- \langle , \rangle is the *unique* invariant Hermitian form on $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$.

・ロト・日本 エリ・ヨー うらの

• \langle , \rangle is non-degenerate if and only if $\mathcal{A}_{\lambda}(\widetilde{\mathbb{O}})$ is simple.

Induction of quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown Suppose $\widetilde{\mathbb{O}}$ corresponds to $(L, \widetilde{\mathbb{O}}_L) \in \Psi(G)$. Choose a Levi subgroup $M \subset G$ containing L. Define

$$\widetilde{\mathbb{O}}_M := \operatorname{Bind}_L^M \widetilde{\mathbb{O}}_L \in \operatorname{Cov}(M).$$

Can define parabolic induction for filtered quantizations

$$\operatorname{Ind}_M^G : Q(\widetilde{\mathbb{O}}_M) \to Q(\widetilde{\mathbb{O}}).$$

Corresponds to the natural inclusion, on the level of parameters

$$\mathfrak{h}(\widetilde{\mathbb{O}}_{M}) = \mathfrak{z}(\mathfrak{l} \cap [\mathfrak{m},\mathfrak{m}])^{*} \hookrightarrow \mathfrak{z}(\mathfrak{l} \cap [\mathfrak{g},\mathfrak{g}])^{*} = \mathfrak{h}(\widetilde{\mathbb{O}}).$$

If A_λ(Õ_M) is real, then Ind^G_M A_λ(Õ_M) is real.
If A_λ(Õ_M) is unitary, then Ind^G_M A_λ(Õ_M) may not be Hermitian (i.e. simple), but if it is Hermitian, it is automatically unitary.

Complementary series for quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

spaces. Recall

Let $\widetilde{\mathbb{O}}$ be a relevant cover. Write: $Q(\widetilde{\mathbb{O}})$ $Q_{\mathbb{R}}(\mathbb{O}) = \{ \text{real quantizations of } \mathbb{C}[\mathbb{O}] \}$ 11 $Q_b(\widetilde{\mathbb{O}}) = \{\text{Hermitian quantizations of } \mathbb{C}[\widetilde{\mathbb{O}}]\}$ 11 $Q_{\mu}(\widetilde{\mathbb{O}}) = \{ \text{unitary quantizations of } \mathbb{C}[\widetilde{\mathbb{O}}] \}$ Write $\mathfrak{h}_{\mathbb{R}}(\widetilde{\mathbb{O}})$, $\mathfrak{h}_{h}(\widetilde{\mathbb{O}})$, $\mathfrak{h}_{u}(\widetilde{\mathbb{O}})$ for the corresponding parameter

$$Q_h(\widetilde{\mathbb{O}}) = \{ \mathcal{A} \in Q_{\mathbb{R}}(\widetilde{\mathbb{O}}) \mid \mathcal{A} \text{ simple} \}$$

Complementary series for quantizations of nilpotent covers

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown The set $\mathfrak{h}_h(\widetilde{\mathbb{O}})$ decomposes into connected components. If $S \subset \mathfrak{h}_h(\widetilde{\mathbb{O}})$, define

C(S) = union of all connected components which meet S nontrivially.

This induces an operation on $Q_h(\widetilde{\mathbb{O}})$.

Proposition

If $S \subset Q_u(\widetilde{\mathbb{O}})$, then $C(S) \subset Q_u(\widetilde{\mathbb{O}})$.

Note: some quantizations in the family C(S) may be reducible as $U(\mathfrak{g})$ -bimodules. So C(S) may *extend* the usual complementary series.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjectures

Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown

Conjecture

Suppose $\widetilde{\mathbb{O}}$ is relevant. Then

$$Q_u(\widetilde{\mathbb{O}}) = C(Q_h(\widetilde{\mathbb{O}}) \cap \bigcup_{M \supseteq L} \operatorname{Ind}_M^G Q_u(\widetilde{\mathbb{O}}_M)).$$

Conjecture

$$\Pi_{u,sph}(G) = \bigcup_{\widetilde{\mathbb{O}} \text{ relevant}} \{ U(\mathfrak{g}) / I_{\lambda}(\widetilde{\mathbb{O}}) \mid \mathcal{A}_{\lambda}(\widetilde{\mathbb{O}}) \in \mathcal{Q}_{u}(\widetilde{\mathbb{O}}) \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

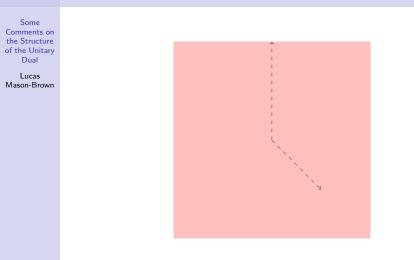


Figure: $\mathfrak{h}(\widetilde{\mathbb{O}})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

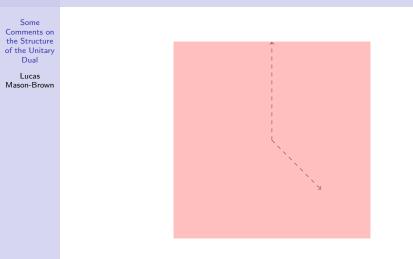


Figure: $\mathfrak{h}_{\mathbb{R}}(\widetilde{\mathbb{O}})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

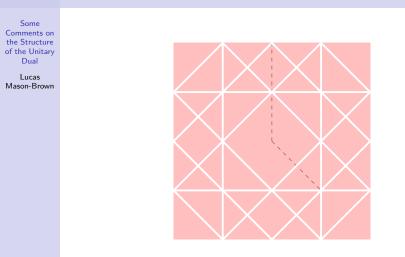


Figure: $\mathfrak{h}_h(\widetilde{\mathbb{O}})$

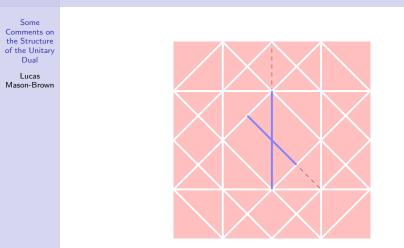
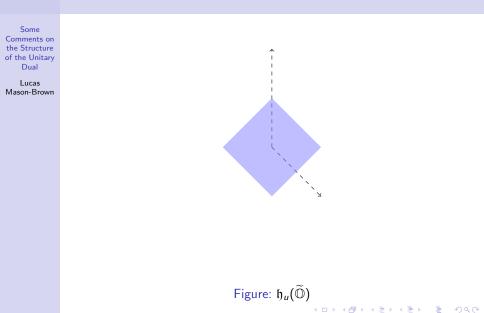
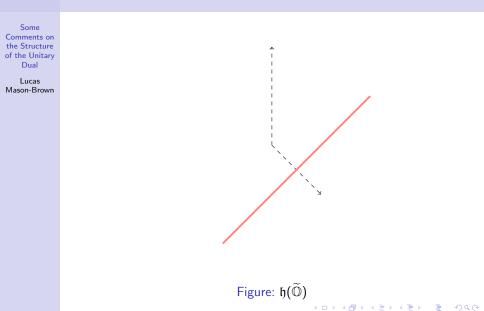
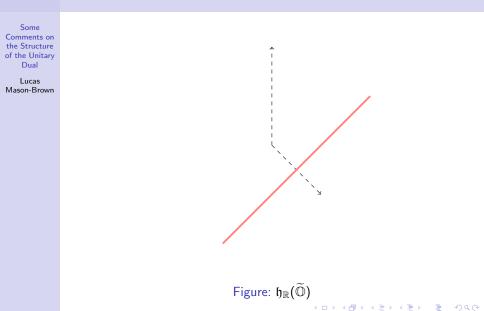


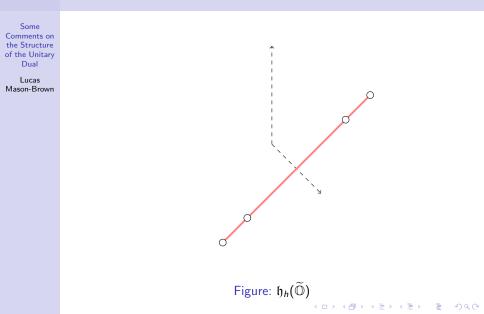
Figure: $\mathfrak{h}_h(\widetilde{\mathbb{O}})$

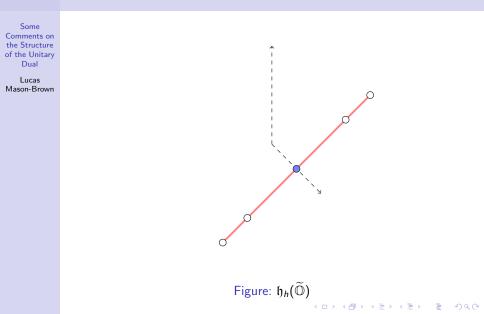


$Sp(4, \mathbb{C})$: subregular orbit









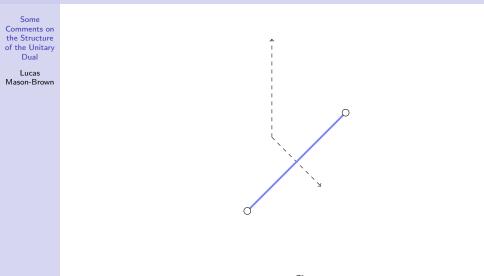
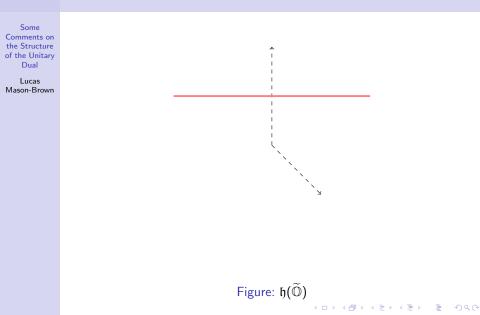
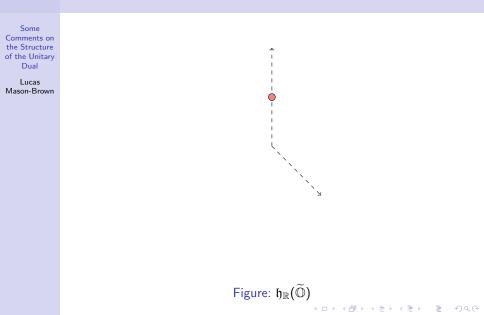
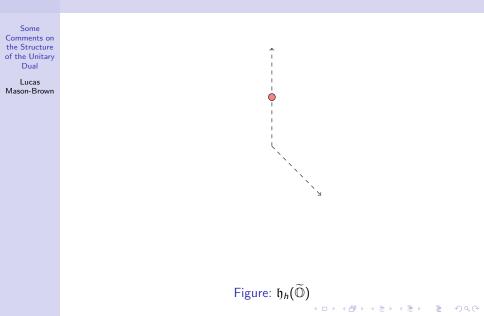


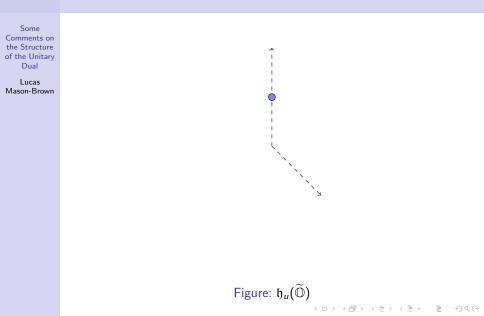
Figure: $\mathfrak{h}_u(\widetilde{\mathbb{O}})$

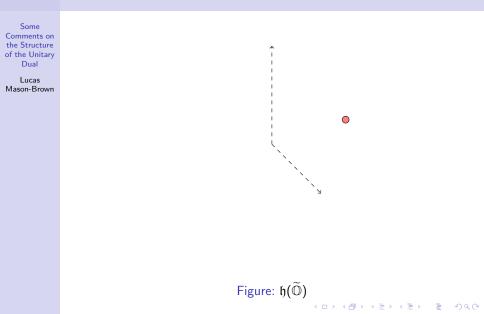
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

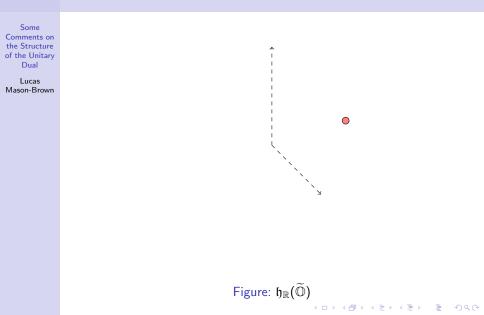


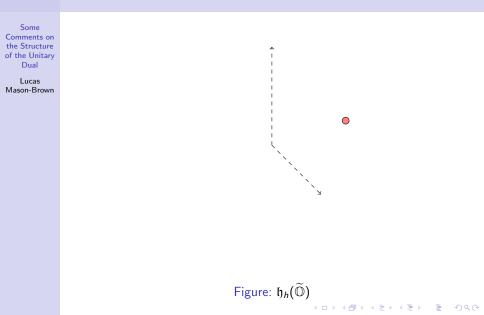


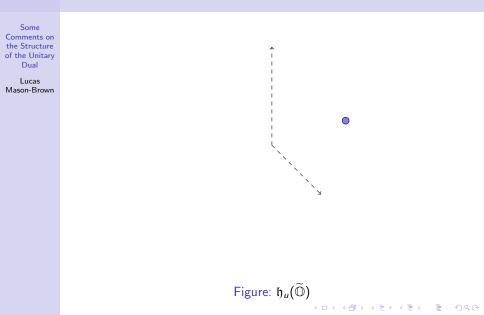




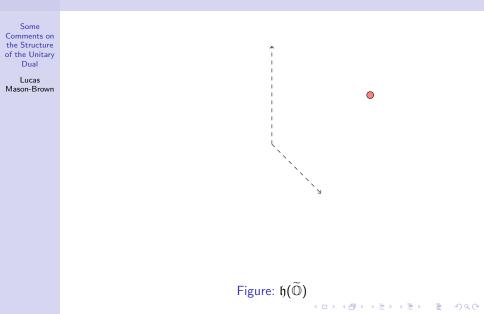




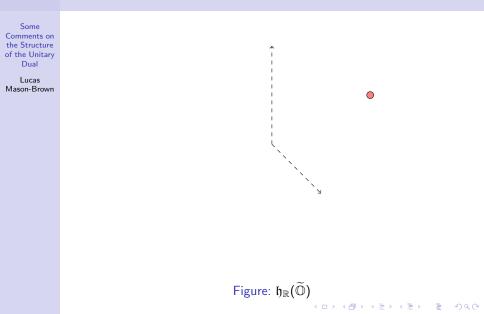




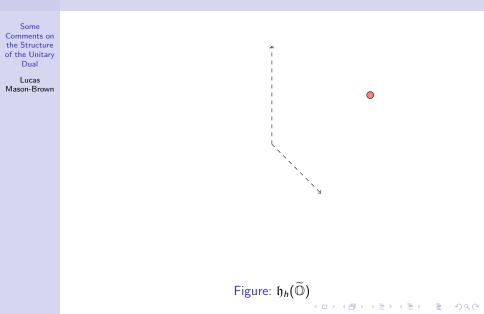
 $\operatorname{Sp}(4,\mathbb{C})$: zero orbit



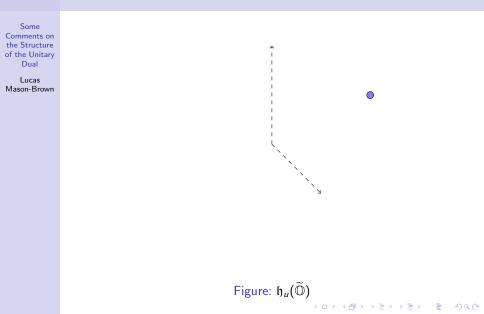
 $\operatorname{Sp}(4,\mathbb{C})$: zero orbit



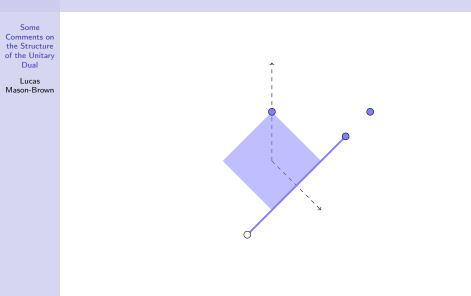
 $\operatorname{Sp}(4,\mathbb{C})$: zero orbit



 $\operatorname{Sp}(4,\mathbb{C})$: zero orbit

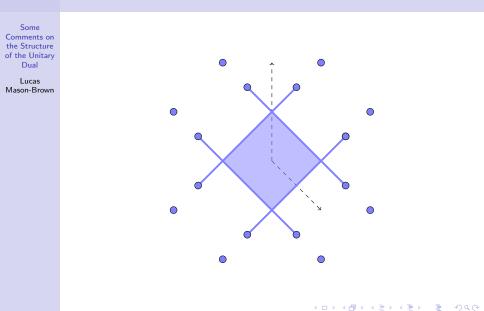


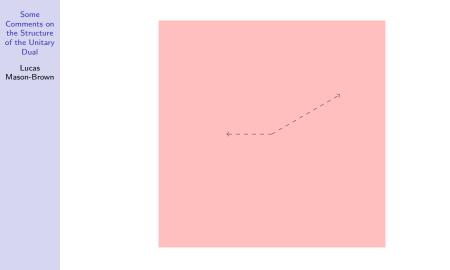
$\operatorname{Sp}(4,\mathbb{C}){:}$ putting it all together



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$\operatorname{Sp}(4,\mathbb{C}){:}$ putting it all together





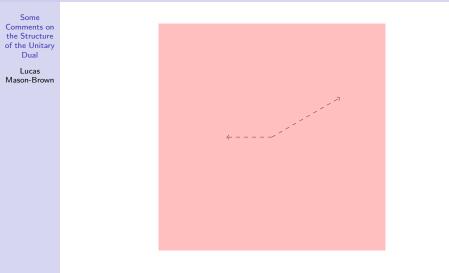
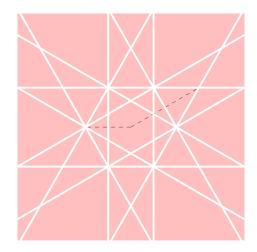


Figure: $\mathfrak{h}_{\mathbb{R}}(\widetilde{\mathbb{O}})$

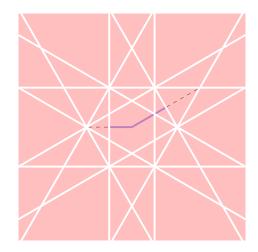
Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown



Some Comments on the Structure of the Unitary Dual

Lucas Mason-Brown



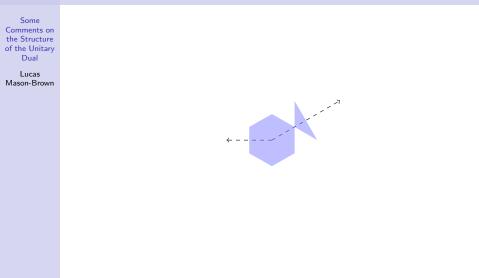
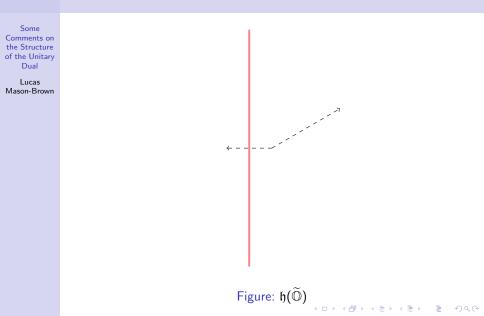
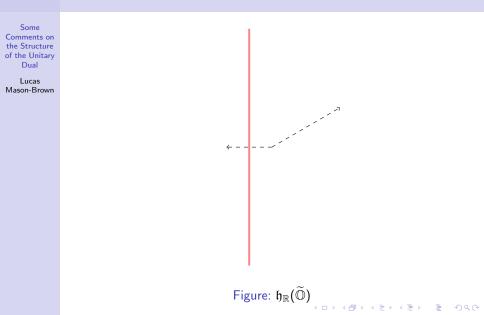
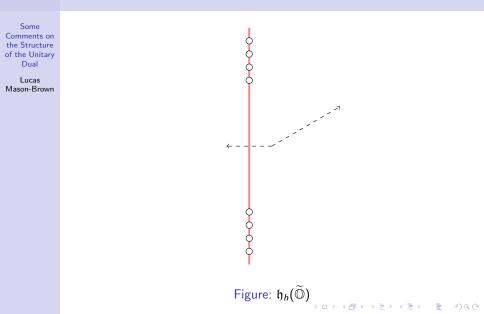
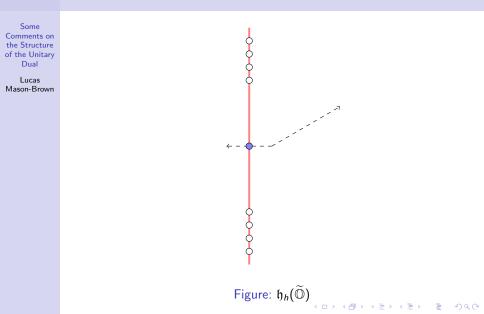


Figure: $\mathfrak{h}_{u}(\widetilde{\mathbb{O}})$









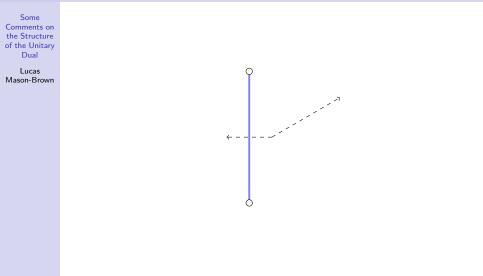
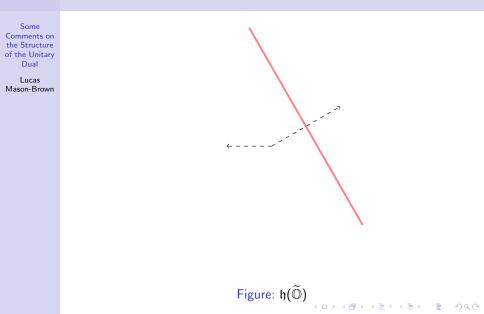
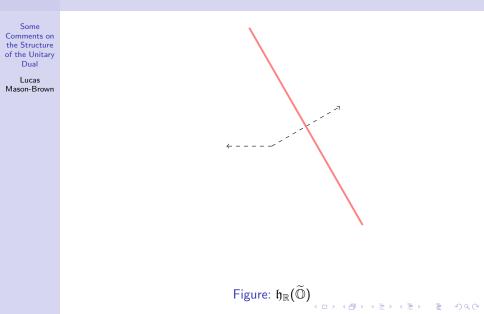
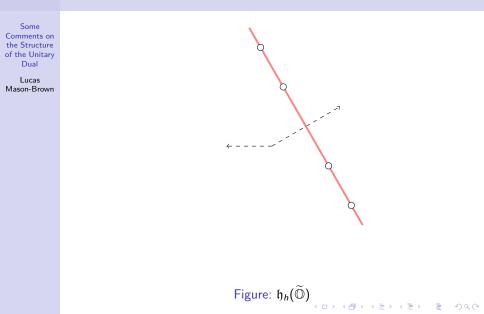
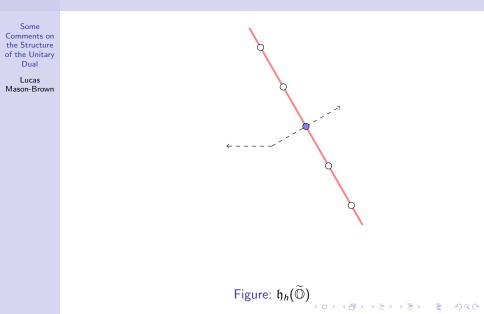


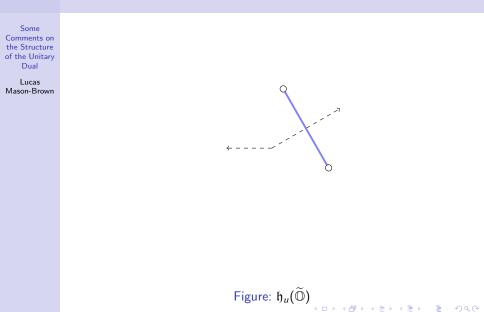
Figure: $\mathfrak{h}_{\mu}(\widetilde{\mathbb{O}})$

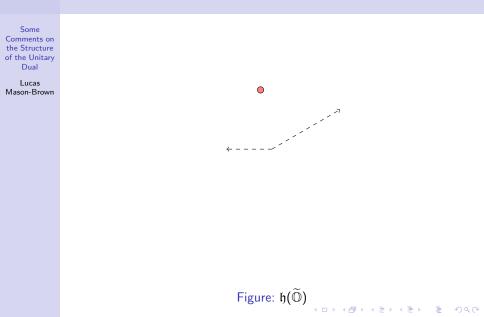


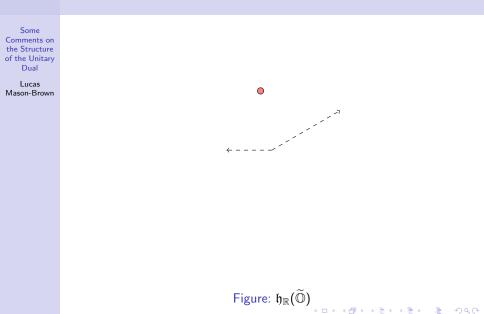


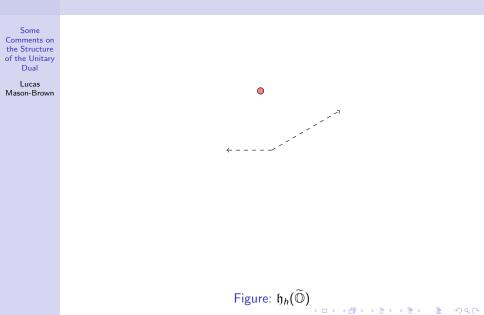


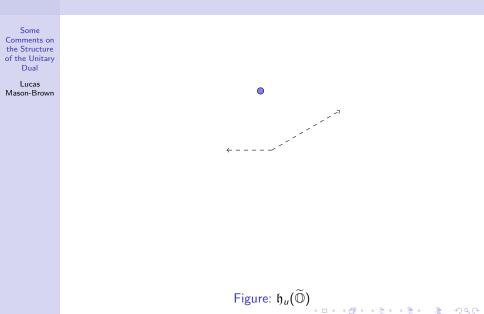


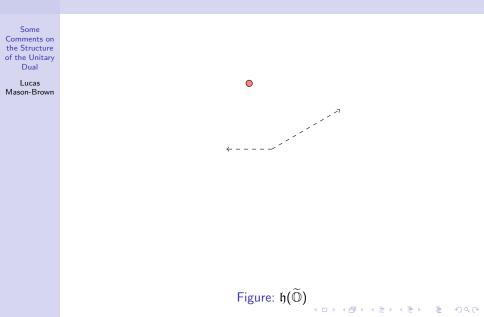


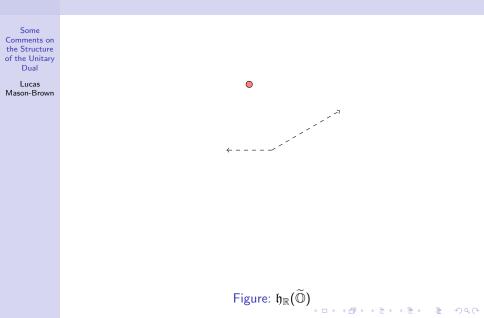


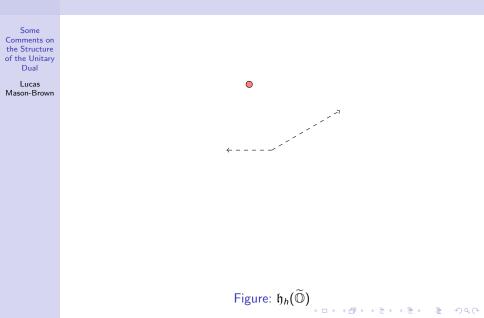


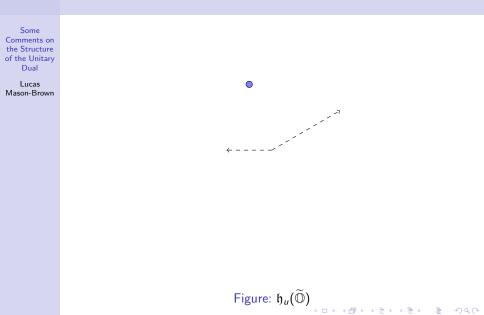


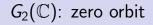


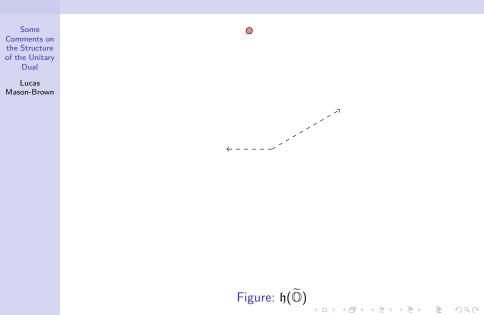


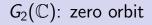


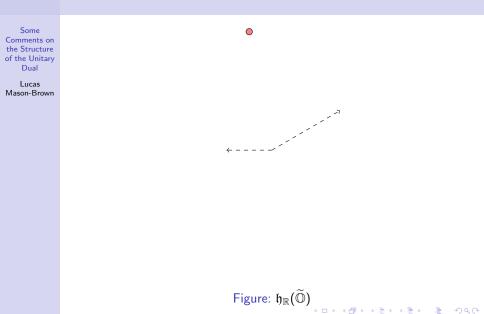


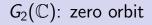


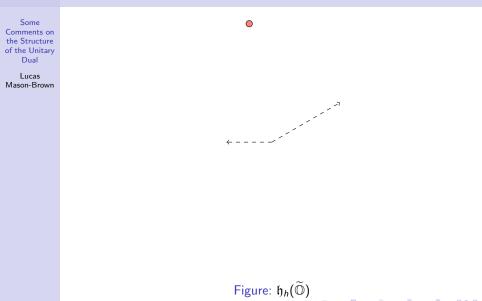


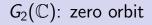


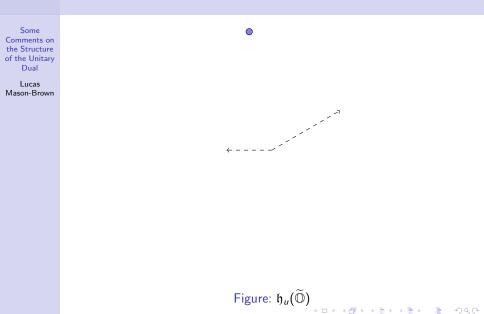




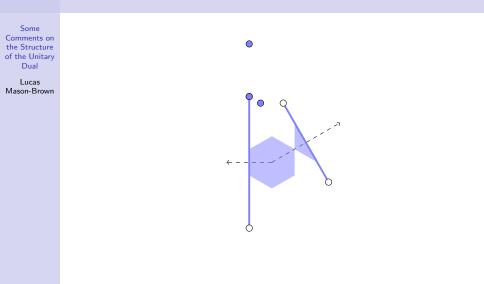








$G_2(\mathbb{C})$: putting it all together



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

$G_2(\mathbb{C})$: putting it all together

