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OVERVIEW

G: connected, complex reductive group
G(R): real points
Wrg: Weil group of R
We = (C*.j), (5~ ' =2,/ =-1)
[G: L-group of G
¢ : Wik —LG: admissible homomorphism
M(¢) = {m1,...,mn}: L-packet of ¢
Define: Wi = (St,j) be the (unique) maximal compact subgroup of Wg.

Question: [J.K. Yu, ~2000]: What does ¢|w, . tell you about the K-types
of the representations in the L-packet M(¢)?

Answer : [Adams, ~2000]: That's an excellent question! | don’t know.
This talk: a better answer.

The same question makes sense over a p-adic field.



ATLAS OF LIE GROUPS AND REPRESENTATIONS

Given: G and § € Out(G),6% = 1.

0 <> an inner class of real forms

Fix once and for all T C B (Cartan and Borel subgroups)
Fokko du Cloux: T is fixed, fixed fixed

X* = X*(T), X« = X«(T) (character, co-character lattices)
GV: connected, reductive complex group, dual to G
Comes with (TV,BY), X*(T") = X.(T), etc.

d—6Y =4t

Fix a pinning (B, T,{Xy}), then

0G: G % (o)

also:

(SVGv: <Gv,5v>



ATLAS OF LIE GROUPS AND REPRESENTATIONS

Definition: a strong involution for G: x € GJ,x? € Z(G)

x = 0, = int(x): Ox(g) = xgx~L.

Ky = G%
x — Oy {strong involutions} /~ — {real forms}/~
Definition: a representation of a strong involution x is a pair (x,7) - 7 an

admissible (g, Kx)-module

Equivalance: (x,7) ~ (x, ) if there exists g € G, gxg ™' = x', 78 ~ '



LANGLANDS PARAMETERS IN ATtLAS: KGB

X = KGB(G,8) = {x € Normgs(T),x> € Z(G)}/ ~T
xe X X[x]={x" € KGB | x' ~¢ x}
Theorem: x € X:

There is a canonical bijection

X[x] ¢ K<\G/B



LANGLANDS PARAMETERS IN ATLAS

Definition An Atlas Parameter is:
p=(x,\v):

1) x € KGB(G, )

2) A e (X" +p)/(1—0:)X"

3) ve Xt

Definition: v(p) = HTOX)\ + 1;29XI/
Various conditions:

Always roots are for T (fixed) in G; “real, imaginary,...” are with respect
to 0,

1) Standard: « imaginary = (\,a¥) >0

2) Non-zero: « simple, imaginary, compact = (\,a) # 0

3) Final: v weakly dominant, « real-simple, (v,a") = 0= (\,a") is odd
)

4) Normal: (y,a) =0, a simple 6y-complex = 0,(«) is positive



LANGLANDS PARAMETERS IN ATLAS

Equivalence:

0) (x,\, ) ~ (x, A, 12;91/)

1) (x, A, v) ~ (saX, SaA, sav) (o simple, Ox-complex)
2) (6, A ¥) ~ (%, WA+ pr) — pro wir) (w € W)

Attached to p = (x, A\, v) is a standard (g, Kx)-module /(p), which has a
unique irreducible quotient J(p).

Theorem: The map p — J(p) is a bijection:

{parameters}/ ~ <> {irreducible representations of strong involutions}/~



A FEW BASIC INVARIANTS

We say an infinitesimal character v is real if v € X* @ R.
p=(x,\v)
1) The infinitesimal character of J(p) is

1 . 1-—6,
140, 16

2 2

1(p):
2) The central character of J(x, \,v) is: (R is the root lattice):
(A7) € (X* + p)/I(1 = 0:)X* + R, (XE) ™)

3) J(p) has real infinitesimal character < v € X3

4) J(p) is tempered & v € X3



TEMPIRIC REPRESENTATIONS

Definition:

1) A representation 7 is tempiric (temp-i-ric) if it is tempered, irreducible,
with real infinitesimal character.

2) A (standard, final, non-zero) parameter p = (x, A, v) is tempiric if J(p)
is tempiric.

In other words

(x, A, v) is tempiric if and only if (it is standard, final, non-zero, and)
v=0.

[Note: suggestions of better terminology are welcome]



LANGLANDS PARAMETERS IN ATLAS: RESTRICTION

TO K

Theorem (Vogan):

G(R): real form, K(R) maximal compact subgroup, with complexification
K.

1) If 7 is tempiric it has a unique lowest K-type LKT(7)
2) The map m — LKT () is a bijection:
{tempiric representations} <« K

Note: This miraculously takes care of the problem parametrizing the
representations of the possibly disconnected group K

This is the starting point to understanding the K-structure of
representations, in particular their lowest K-types



EXAMPLE: PGL(2,R)

G(R) = PGL(2,R), K = O(2)

Tempiric w and their LKTs:

H)w= Indg(l): spherical principal series — trivial representation of K

2) m = Ind§(sgn): non-spherical principal series — sgn representation of K

3) m(\) discrete series, A = k+ p (k =0,2,4...) — two-dimensional
irreducible of SO(2) weights £(k + 1)



TEMPIRIC REPRESENTATIONS

Basic Fact: I(x, A,v) and I(x, A\, ") have same restriction to K
and J(x, \,v) and J(x, A, ') have same lowest K-type
Suppose (x, A\, v) is a (non-zero,standard) final parameter
(x,\,v) = (x,A,0)

I(x,\,v) and I(x, A, 0) have the same K-types. ..

However: (x,\,0) may NOT be final (and/or normal)



ExaAaMPLE: SL(2, R)

G = SL(2,R)

x : open orbit on G/B

p = (x,[0], [v]): Indg(sgn @ v)

K-types: 2Z + 1

Final condition:

(v >0): (r,a¥) =0= (A, ) is odd

condition is empty if v # 0

If v =0: (\, ") is odd (which is false since A = [0])
Well known limit of discrete series picture:

Indg(sgn, 0) is the direct sum of two limits of discrete series, with lowest
K-types +1



FINALIZE

There is a well defined algorithm to replace a standard, non-zero, but
non-final parameter p with a set of final parameters {p1,...,pn}.

Inductive:

1) if p fails to be final because of a real-simple root «: replace p with the
Cayley transform of p (1 or 2 terms)

2) if p fails to be normal because of a complex simple roots a: replace p
with s, x p (a single parameter)

Atlas algorthm for computing lowest K-types:
p = (x,\,v) — (x,A,0) — Finalize(x, \,0) = {(x1,A1,0),...,(xn, An,0)}

Then J(x, A\, v) has n LKTs: the lowest K-types of the tempiric
representations J(x;, A;, 0)



ExaAaMPLE: SL(2, R)

set G=SL(2,R)
set p=parameter (KGB(G,2),[0], [1])

atlas>
atlas>
atlas>
Value:
atlas>
atlas>
Value:
atlas>
Value:

%

final parameter(x=2,lambda=[2]/1,nu=[1]/1)
set g=parameter (KGB(G,2), [0],[0])

q

non-final parameter(x=2,lambda=[2]/1,nu=[0]/1)
finalize(q)

1*parameter (x=1,lambda=[0]/1,nu=[0]/1) [0O]
1*parameter (x=0,lambda=[0]/1,nu=[0]/1) [0O]

atlas> print_branch_irr_long (p,KGB(G,1),10)
lambda

X

el o o o =
O = O O

L
L
L
L
L
r

S B NN OO

1/1
/1
/1
171
171
1/1

hw
[11]
[ -11]
[ 3]
[ -31]
[ 5]
[ =5 1

dim height
1 0
1 0
1 2
1 2
1 4
1 4



EXAMPLES

atlas> set G=Spin(4,4)

atlas> set p=all_parameters_gamma (G,G.rho) [2]

atlas> p

Value: final parameter(x=108,lambda=[1,2,1,1]/1,nu=[1,1,1,11/1)
atlas> G.trivial

Value: final parameter(x=108,lambda=[1,1,1,1]/1,nu=[1,1,1,11/1)
atlas> finalize(p*0)

1*parameter (x=7,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0O]
1*parameter (x=6,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter (x=5,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter (x=0,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [O]

atlas> for mu in LKTs(p) do prints(highest_weight (mu,KGB(G,0)), " "
(0 ,KGB element #0,[ 1, 1, -1, -11]) 3
(O ,KGB element #0,[ -1, 1, 1, -11]1) 3
((),KGB element #0,[ -1, 1, -1, 11) 3
() ,KGB element #0,[ 1, -1, 1, 11) 3



WHAT ABOUT LANGLANDS PARAMETERS?

Wr = (C*,))

Definition: ®o(G) = {¢ : W —LG}
Mo 2 ¢ N(¢) ={m1,...,7n}
Complete Langlands parameters:

Roughly speaking the representations in I1(¢) are parametrized by

characters of
S¢ = Centgv(¢)/Centh (gb)o

§¢: a certain cover of Sy.



LANGLANDS PARAMETERS

Definition:
X(Sy): set of characters of S,

Definition:
®o(G,6) ={¢: Wk —'G}

®(G,8) = {(¢,x) | ¢ € o, x € X(Sy)}



LANGLANDS CLASSIFICATION

Theorem: (Adams/Barbasch/Vogan 1992):
There is a canonical bijection between:
(G,8)/G" +— {(x,m)}/ ~
7 an irreducible representation of the strong involution x
Note: (¢, x = 1) — a generic representation of the quasisplit group.
Note: The classical result for a fixed real form G(R) is:
Fix xp, K = Ky, <> G(R).
{(x,m) | x ~ x0}/ ~+> {irreducible admissible representations of G(R)}

Note: Replace §¢ with Sy, restrict to subset of pure strong real forms (the
quasisplit form is always pure).



TEMPIRIC PARAMETERS

Basic fact: ¢ is tempiric < ¢lp+ =1
Example: G = PGL(2,R), 'G = SL(2,C),
Spherical principal series:

6(z) = diag(|2]", 2| )

Tempered: v € iR

Real infinitesimal character: v € R

Both: v = 0.

1— Wee— Wg R — 1

(canonically split)

Wk, is the unique maximal compact subgroup of Wg



TEMPIRIC PARAMETERS

Recall:

®(G,0) = {(¢.x)} where ¢ : Wg —LG, x is a character of Sy (not §¢)
Definition:

®(G,0) = {(¢c, x)} where ¢ : Wi . —LG, x is a character of S,
(dc, x) = 1(@e, x): lowest K-type of m(¢c, x)

Definition: Kan = {(x, 1) | x € X, n € K¢}/ G

Corollary of the preceding Theorem:

The map (¢¢, x) — (e, x) gives a bijection:

dc/GY +— Kan

RHS: x is a (pure) strong involution, u is an irreducible finite dimensional
representation of K.



RESTRICTING TO K

There is an obvious map (restriction): ®o(G) — ®o(G):

¢ — (;SC = ¢|WR,C
So, given ¢:

¢ = {m(d,x) | x € X(Sy)}

¢ = ¢c = {ul¢e,7) | T € X(Sg.)}

What is the relationship?



RESTRICTING TO K

¢: Wrg —=LG, — ¢c: Wr o =G

¢C(WR,C) C d)( WR)
Centgv (o(WR)) C Centgv (¢c(WR,c))

S(¢) — S(¢c)

Proposition: The map S(¢) — S(¢¢) is injective.

(Shelstad proves a closely related statement)



Given ¢ : W —LG
¢ _> ¢C — ¢’WR,C
S¢ — S¢C
induces I : X(Sg.) = X(S4)
Theorem: (Adams/Afgoustidis):
Suppose ¢ : Wr —LG is tempered, and y € X(S¢).

(¢,x) — 7 = m(¢, x) irreducible, tempered

Then the lowest K-types for 7(¢, x) are parametrized by the fiber of I":

LKTs(m(d, x) = {pl¢e,7) [ T(7) = x}



SKETCH OF PROOF

The proof is by induction: we follow the steps in the finalize algorithm
applied to ¢.. We prove injectivity Sy < S¢ and the main Theorem at the
same time.

The key step is a single Cayley transform.



INVOLUTIONS OF T

Key technical point: ¢ goes to an involution of TV.
®(j) is such an involution. This is not then one we need.
When ~ is singular there is a choice:

Definition: ¢+~ 7V, an involution of TV:
take the most split choice (corresponding to the most compact choice on

the group side)



CAYLEY TRANSFORM

With this choice, let 7 be the dual involution of T.

Suppose ¢’ is obtained from ¢ by a single real Cayley transform c,.
Suppose 7 is a (twisted) involution of TV (7 € W4V, 72 = 1)

S,;v: the component group of (TV)Tv

[Note: Sy = S,v/{ms | (y,a") =0}]

Then X(S;v) acts simply transitively on X; (to be precise X;(z,v)).
Easy fact: given ¢, 7V as above:

X(S¢) — X(ST\/) — X

X(S¢r)

X(Se)

Xer(zpv, ) Lo Xr(z,v)

X-(z) ={x € X, x> =z,p(x) =T € W5}



ExaAaMPLE: SL(2, R)

G = SL(2,R)
GY = PGL(2) = S0(3)
¢(z) = diag(|z|",|z|7", 1)

o(j) = diag(—1,-1,1)
v #0: Cent(¢) =C*,Sy =1

¢c(v =0): Cent(dc) = O(2), Sy, = Z/27Z.
v#0:7" =1 (no choice)
v = 0: ¢ is conjugate to

0 1 0
¢'(z2)=1,¢:0)=|-1 0 0
0 0 -1

So 7V =s,



ExaAaMPLE: SL(2, R)

7)27 —>1

{X07X1} —> X2

7)27 ——1

{x0,x1} —>x2



THE LITERATURE

Knapp-Stein: R, ,: defined in terms of the Plancherel measure,
intertwining operators; reducibility of tempered representations

Vogan: algebraic definition: reduction to the quasisplit case, R
Shelstad/Langlands: The group Ry defined on the dual side:

1 =S¢, =Sy =+ Ry —1

R¢ ~ R(O’, l/)



DICTIONARY

1

Se Sg¢

R(o,v) —1
1 Sée, Se. R(o,1) — 1

This diagram commutes (not obvious):

S¢./S¢ ~ R(0,1)/R(0,v)



CONCLUSION

¢ Wr —LG, tempered

¢ = Pc

I X(Sg.) = X(S9)

(¢,x) € N(G,0) = 7(¢, x)
Then:

LKTs(m(¢, x) = {(pe, 7) | T(7) = x}

Question/Hope: is this the “right” formulation: does it generalize to the
p-adic case?



Thank you (again) David - for everything!



