

L-homomorphisms and lowest K-types

Jeffrey Adams and Alexandre Afgoustidis Vogan conference, MIT September 23, 2022

Overview

G: connected, complex reductive group

 $G(\mathbb{R})$: real points

 $W_{\mathbb{R}}$: Weil group of \mathbb{R}

$$W_{\mathbb{R}}=\langle \mathbb{C}^{ imes}, j
angle$$
, (jzj $^{-1}=\overline{z}, j^2=-1$)

^LG: L-group of G

 $\phi: \mathcal{W}_{\mathbb{R}} \rightarrow^{L} G$: admissible homomorphism

 $\Pi(\phi) = \{\pi_1, \dots, \pi_n\}$: L-packet of ϕ

Define: $W_{\mathbb{R},c} = \langle S^1, j \rangle$ be the (unique) maximal compact subgroup of $W_{\mathbb{R}}$.

Question: [J.K. Yu, ~2000]: What does $\phi|_{W_{\mathbb{R},c}}$ tell you about the K-types of the representations in the L-packet $\Pi(\phi)$?

Answer : [Adams, \sim 2000]: That's an excellent question! I don't know.

This talk: a better answer.

The same question makes sense over a *p*-adic field.

Atlas of Lie Groups and Representations

Given: G and $\delta \in Out(G), \delta^2 = 1$.

 $\delta \leftrightarrow$ an inner class of real forms

Fix once and for all $T \subset B$ (Cartan and Borel subgroups)

Fokko du Cloux: T is fixed, fixed fixed

 $X^* = X^*(T), X_* = X_*(T)$ (character, co-character lattices)

 G^{\vee} : connected, reductive complex group, dual to G

Comes with (T^{\vee}, B^{\vee}) , $X^*(T^{\vee}) = X_*(T)$, etc.

 $\delta\mapsto\delta^{\vee}=-\delta^t$

Fix a pinning $(B, T, \{X_{\alpha}\})$, then ${}^{\delta}G : G \rtimes \langle \delta \rangle$

also:

 ${}^{\delta^{\vee}}\!G^{\vee}:\ \langle G^{\vee},\delta^{\vee}
angle$

Definition: a strong involution for $G: x \in G\delta, x^2 \in Z(G)$

$$egin{aligned} &x o heta_x = ext{int}(x) \colon heta_x(g) = xgx^{-1}. \ &\mathcal{K}_x = G^{ heta_x} \end{aligned}$$

 $x \to \theta_x$: {strong involutions}/~ \twoheadrightarrow {real forms}/~

Definition: a representation of a strong involution x is a pair (x, π) - π an admissible (\mathfrak{g}, K_x) -module

Equivalance: $(x,\pi) \simeq (x',\pi')$ if there exists $g \in G, gxg^{-1} = x', \pi^g \simeq \pi'$

$$X = KGB(G, \delta) = \{x \in \operatorname{Norm}_{G\delta}(T), x^2 \in Z(G)\} / \sim_T x \in X \mapsto X[x] = \{x' \in KGB \mid x' \sim_G x\}$$

Theorem: $x \in X$:

There is a canonical bijection

 $X[x] \leftrightarrow K_x \backslash G/B$

LANGLANDS PARAMETERS IN ATLAS

Definition An Atlas Parameter is:

- $p = (x, \lambda, \nu):$ 1) $x \in KGB(G, \delta)$ 2) $\lambda \in (X^* + \rho)/(1 \theta_x)X^*$
- 3) $\nu \in X^*_{\mathbb{C}}$

Definition: $\gamma(p) = \frac{1+\theta_x}{2}\lambda + \frac{1-\theta_x}{2}\nu$

Various conditions:

Always roots are for T (fixed) in G; "real, imaginary,..." are with respect to θ_x

- 1) Standard: α imaginary $\Rightarrow \langle \lambda, \alpha^{\vee} \rangle \ge 0$
- 2) Non-zero: α simple, imaginary, compact $\Rightarrow \langle \lambda, \alpha^{\vee} \rangle \neq 0$

3) Final: ν weakly dominant, α real-simple, $\langle \nu, \alpha^{\vee} \rangle = 0 \Rightarrow \langle \lambda, \alpha^{\vee} \rangle$ is odd

4) Normal: $\langle \gamma, \alpha^{\vee} \rangle = 0$, α simple θ_x -complex $\Rightarrow \theta_x(\alpha)$ is positive

Equivalence:

0) $(x, \lambda, \nu) \simeq (x, \lambda, \frac{1-\theta}{2}\nu)$ 1) $(x, \lambda, \nu) \sim (s_{\alpha}x, s_{\alpha}\lambda, s_{\alpha}\nu)$ (α simple, θ_x -complex) 2) $(x, \lambda, \nu) \sim (x, w(\lambda + \rho_r) - \rho_r, w\nu)$ ($w \in W_r$) Attached to $n = (x, \lambda, \nu)$ is a standard (g, K)-module I(n), which has a

Attached to $p = (x, \lambda, \nu)$ is a standard (\mathfrak{g}, K_x) -module I(p), which has a unique irreducible quotient J(p).

Theorem: The map $p \rightarrow J(p)$ is a bijection:

 $\{ \mathsf{parameters} \} / \sim \leftrightarrow \{ \mathsf{irreducible \ representations \ of \ strong \ involutions} \} / \sim$

We say an infinitesimal character γ is *real* if $\gamma \in X^* \otimes \mathbb{R}$. $p = (x, \lambda, \nu)$

1) The infinitesimal character of J(p) is

$$\gamma(p) := rac{1+ heta_x}{2}\lambda + rac{1- heta_x}{2}
u$$

2) The central character of $J(x, \lambda, \nu)$ is: (*R* is the root lattice):

$$(\overline{\lambda},\overline{
u})\in (X^*+
ho)/[(1- heta_x)X^*+R],(X^*_{\mathbb{C}})^{- heta_x})$$

3) J(p) has real infinitesimal character ⇔ ν ∈ X_ℝ^{*}
4) J(p) is tempered ⇔ ν ∈ X_{iℝ}^{*}

Definition:

1) A representation π is tempiric (temp-i-ric) if it is tempered, irreducible, with real infinitesimal character.

2) A (standard, final, non-zero) parameter $p = (x, \lambda, \nu)$ is tempiric if J(p) is tempiric.

In other words

 (x, λ, ν) is tempiric if and only if (it is standard, final, non-zero, and) $\nu = 0$.

[Note: suggestions of better terminology are welcome]

Theorem (Vogan):

 $G(\mathbb{R})$: real form, $K(\mathbb{R})$ maximal compact subgroup, with complexification K.

1) If π is tempiric it has a unique lowest K-type $LKT(\pi)$

2) The map $\pi \mapsto LKT(\pi)$ is a bijection:

 $\{\text{tempiric representations}\} \leftrightarrow \widehat{K}$

Note: This miraculously takes care of the problem parametrizing the representations of the possibly disconnected group K

This is the starting point to understanding the K-structure of representations, in particular their lowest K-types

 $G(\mathbb{R}) = PGL(2,\mathbb{R}), \ K = O(2)$

Tempiric π and their LKTs:

1) $\pi = \operatorname{Ind}_{B}^{G}(1)$: spherical principal series \mapsto trivial representation of K2) $\pi = \operatorname{Ind}_{B}^{G}(\operatorname{sgn})$: non-spherical principal series \mapsto sgn representation of K3) $\pi(\lambda)$ discrete series, $\lambda = k + \rho$ (k = 0, 2, 4...) \mapsto two-dimensional irreducible of SO(2) weights $\pm (k + 1)$ Basic Fact: $I(x, \lambda, \nu)$ and $I(x, \lambda, \nu')$ have same restriction to Kand $J(x, \lambda, \nu)$ and $J(x, \lambda, \nu')$ have same lowest K-type Suppose (x, λ, ν) is a (non-zero,standard) final parameter $(x, \lambda, \nu) \rightarrow (x, \lambda, 0)$ $I(x, \lambda, \nu)$ and $I(x, \lambda, 0)$ have the same K-types... However: $(x, \lambda, 0)$ may NOT be final (and/or normal)

Example: $SL(2, \mathbb{R})$

 $G = SL(2,\mathbb{R})$

- x : open orbit on G/B
- $p = (x, [0], [\nu])$: $Ind_B^G(sgn \otimes \nu)$

K-types: $2\mathbb{Z} + 1$

Final condition:

$$(\nu \geq \mathbf{0}): \ \langle \nu, \alpha^{\vee} \rangle = \mathbf{0} \Rightarrow \langle \lambda, \alpha^{\vee} \rangle \text{ is odd}$$

condition is empty if $\nu \neq 0$

If $\nu = 0$: $\langle \lambda, \alpha^{\vee} \rangle$ is odd (which is false since $\lambda = [0]$)

Well known limit of discrete series picture:

 ${\rm Ind}_B^G({\rm sgn},0)$ is the direct sum of two limits of discrete series, with lowest K-types ± 1

There is a well defined algorithm to replace a standard, non-zero, but non-final parameter p with a set of final parameters $\{p_1, \ldots, p_n\}$. Inductive:

1) if p fails to be final because of a real-simple root α : replace p with the Cayley transform of p (1 or 2 terms)

2) if p fails to be normal because of a complex simple roots α : replace p with $s_{\alpha} \times p$ (a single parameter)

Atlas algorthm for computing lowest K-types:

 $p = (x, \lambda, \nu) \mapsto (x, \lambda, 0) \mapsto \mathsf{Finalize}(x, \lambda, 0) = \{(x_1, \lambda_1, 0), \dots, (x_n, \lambda_n, 0)\}$

Then $J(x, \lambda, \nu)$ has *n* LKTs: the lowest K-types of the tempiric representations $J(x_i, \lambda_i, 0)$

Example: $SL(2, \mathbb{R})$

```
atlas> set G=SL(2,R)
atlas> set p=parameter(KGB(G,2),[0],[1])
atlas> p
Value: final parameter(x=2,lambda=[2]/1,nu=[1]/1)
atlas> set q=parameter(KGB(G,2),[0],[0])
atlas> q
Value: non-final parameter(x=2,lambda=[2]/1,nu=[0]/1)
atlas> finalize(q)
Value:
1*parameter(x=1,lambda=[0]/1,nu=[0]/1) [0]
1*parameter(x=0,lambda=[0]/1,nu=[0]/1) [0]
```

atlas> print_branch_irr_long (p,KGB(G,1),10) x lambda hw dim height m 1 1 [0]/1 [1] 1 0 1 0 [0]/1 [-1] 1 0 1 1 [2]/1 [3] 1 2 0 [2]/1 [-3] 1 2 1 1 1 [4]/1 [5] 1 4 1 0 [4]/1 [-5] 1 4

Examples

```
atlas> set G=Spin(4,4)
atlas> set p=all_parameters_gamma (G,G.rho)[2]
atlas> p
Value: final parameter(x=108,lambda=[1,2,1,1]/1,nu=[1,1,1,1]/1)
atlas> G.trivial
Value: final parameter(x=108,lambda=[1,1,1,1]/1,nu=[1,1,1,1]/1)
atlas> finalize(p*0)
```

```
1*parameter(x=7,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=6,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=5,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
1*parameter(x=0,lambda=[0,0,0,0]/1,nu=[0,0,0,0]/1) [0]
```

```
atlas> for mu in LKTs(p) do prints(highest_weight(mu,KGB(G,0)), " "
((),KGB element #0,[ 1, 1, -1, -1 ]) 3
((),KGB element #0,[ -1, 1, 1, -1 ]) 3
((),KGB element #0,[ -1, 1, -1, 1 ]) 3
((),KGB element #0,[ 1, -1, 1, 1 ]) 3
```

 $W_{\mathbb{R}} = \langle \mathbb{C}^{\times}, j \rangle$

Definition: $\Phi_0(G) = \{\phi : W_{\mathbb{R}} \to^L G\}$

 $\Pi_0 \ni \phi \mapsto \Pi(\phi) = \{\pi_1, \ldots, \pi_n\}$

Complete Langlands parameters:

Roughly speaking the representations in $\Pi(\phi)$ are parametrized by characters of

$$\mathbb{S}_{\phi} = \operatorname{Cent}_{G^{\vee}}(\phi)/\operatorname{Cent}_{G^{\vee}}(\phi)^{0}$$

 $\widetilde{\mathbb{S}}_{\phi}$: a certain cover of \mathbb{S}_{ϕ} .

Definition:

$$X(\widetilde{\mathbb{S}}_{\phi})$$
: set of characters of $\widetilde{\mathbb{S}}_{\phi}$

Definition:

$$\Phi_0(G,\delta) = \{\phi: W_{\mathbb{R}} \to^L G\}$$

$$\Phi(\mathcal{G},\delta) = \{(\phi,\chi) \mid \phi \in \Phi_0, \chi \in X(\widetilde{\mathbb{S}}_{\phi})\}$$

Theorem: (Adams/Barbasch/Vogan 1992):

There is a canonical bijection between:

$$\Phi(G,\delta)/G^{\vee} \longleftrightarrow \{(x,\pi)\}/\sim$$

 π an irreducible representation of the strong involution x

Note: $(\phi, \chi = 1) \mapsto$ a generic representation of the quasisplit group. Note: The classical result for a fixed real form $G(\mathbb{R})$ is: Fix $x_0, K = K_{x_0} \leftrightarrow G(\mathbb{R})$.

 $\{(x,\pi) \mid x \sim x_0\}/ \sim \leftrightarrow \{\text{irreducible admissible representations of } G(\mathbb{R})\}$ Note: Replace $\widetilde{\mathbb{S}}_{\phi}$ with \mathbb{S}_{ϕ} , restrict to subset of *pure* strong real forms (the quasisplit form is always pure). Basic fact: ϕ is tempiric $\Leftrightarrow \phi|_{\mathbb{R}^+} = 1$ Example: $G = PGL(2, \mathbb{R}), \ {}^tG = SL(2, \mathbb{C}),$

Spherical principal series:

 $\phi(z) = \mathsf{diag}(|z|^\nu, |z|^{-\nu})$

Tempered: $\nu \in i\mathbb{R}$

Real infinitesimal character: $\nu \in \mathbb{R}$

Both: $\nu = 0$.

$$1
ightarrow \mathcal{W}_{\mathbb{R},c}
ightarrow \mathcal{W}_{\mathbb{R}}
ightarrow \mathbb{R}^+
ightarrow 1$$

(canonically split)

 $\mathit{W}_{\mathbb{R},\mathit{c}}$ is the unique maximal compact subgroup of $\mathit{W}_{\mathbb{R}}$

Recall:

 $\Phi(G, \delta) = \{(\phi, \chi)\}$ where $\phi : W_{\mathbb{R}} \to^{L} G, \chi$ is a character of \mathbb{S}_{ϕ} (not $\widetilde{\mathbb{S}}_{\phi}$). Definition:

$$\begin{split} \Phi_c(G,\delta) &= \{(\phi_c,\chi)\} \text{ where } \phi_c : W_{\mathbb{R},c} \to^L G, \ \chi \text{ is a character of } \mathbb{S}_{\phi_c} \\ (\phi_c,\chi) &\mapsto \mu(\phi_c,\chi) \text{: lowest K-type of } \pi(\phi_c,\chi) \\ \text{Definition: } \widehat{K}_{\text{all}} &= \{(x,\mu) \mid x \in X, \mu \in \widehat{K}_x\}/G \end{split}$$

Corollary of the preceding Theorem:

The map $(\phi_c, \chi) \mapsto \mu(\phi_c, \chi)$ gives a bijection:

$$\Phi_c/G^{\vee}\longleftrightarrow \widehat{K}_{\mathrm{all}}$$

RHS: x is a (pure) strong involution, μ is an irreducible finite dimensional representation of K_x .

There is an obvious map (restriction): $\Phi_0(G) \rightarrow \Phi_{c,0}(G)$:

 $\phi \to \phi_{\rm C} = \phi |_{{\rm W}_{\mathbb{R},c}}$

So, given ϕ :

$$\phi \mapsto \{\pi(\phi, \chi) \mid \chi \in X(\mathbb{S}_{\phi})\}$$

$$\phi \to \phi_c \mapsto \{\mu(\phi_c, \tau) \mid \tau \in X(\mathbb{S}_{\phi_c})\}$$

What is the relationship?

$$\phi: W_{\mathbb{R}} \rightarrow^{L} G, \mapsto \phi_{c}: W_{\mathbb{R},c} \rightarrow^{L} G$$

$$\phi_{c}(W_{\mathbb{R},c}) \subset \phi(W_{\mathbb{R}})$$

$$\operatorname{Cent}_{G^{\vee}}(\phi(W_{\mathbb{R}})) \subset \operatorname{Cent}_{G^{\vee}}(\phi_c(W_{\mathbb{R},c}))$$

$$\mathbb{S}(\phi) \to \mathbb{S}(\phi_c)$$

Proposition: The map $\mathbb{S}(\phi) \to \mathbb{S}(\phi_c)$ is injective. (Shelstad proves a closely related statement)

THE MAIN RESULT

Given $\phi : W_{\mathbb{R}} \to {}^{L}G$ $\phi \to \phi_{c} = \phi|_{W_{\mathbb{R},c}}$

$$\mathbb{S}_{\phi} \hookrightarrow \mathbb{S}_{\phi_c}$$
nduces $\Gamma: X(\mathbb{S}_{\phi_c}) \twoheadrightarrow X(S_{\phi})$

Theorem: (Adams/Afgoustidis): Suppose $\phi : W_{\mathbb{R}} \to^{L} G$ is tempered, and $\chi \in X(\mathbb{S}_{\phi})$. $(\phi, \chi) \mapsto \pi = \pi(\phi, \chi)$ irreducible, tempered

Then the lowest K-types for $\pi(\phi, \chi)$ are parametrized by the fiber of Γ :

$$LKTs(\pi(\phi, \chi) = \{\mu(\phi_c, \tau) \mid \Gamma(\tau) = \chi\}$$

The proof is by induction: we follow the steps in the finalize algorithm applied to ϕ_c . We prove injectivity $\mathbb{S}_{\phi} \hookrightarrow \mathbb{S}_c$ and the main Theorem at the same time.

The key step is a single Cayley transform.

Key technical point: ϕ goes to an involution of T^{\vee} .

 $\phi(j)$ is such an involution. This is *not* then one we need.

When γ is singular there is a choice:

Definition: $\phi \mapsto \tau^{\vee}$, an involution of T^{\vee} : take the *most split* choice (corresponding to the most compact choice on the group side)

CAYLEY TRANSFORM

With this choice, let τ be the dual involution of T.

Suppose ϕ' is obtained from ϕ by a single real Cayley transform c_{α} .

Suppose τ is a (twisted) involution of T^{\vee} ($\tau \in W\delta^{\vee}$, $\tau^2 = 1$) $\mathbb{S}_{\tau^{\vee}}$: the component group of $(T^{\vee})^{\tau^{\vee}}$

[Note: $\mathbb{S}_{\phi} = \mathbb{S}_{\tau^{\vee}} / \{ m_{\beta} \mid \langle \gamma, \alpha^{\vee} \rangle = 0 \}$] Then $X(\mathbb{S}_{\tau^{\vee}})$ acts simply transitively on X_{τ} (to be precise $X_{\tau}(z_{\rho^{\vee}})$). Easy fact: given ϕ , τ^{\vee} as above:

 $X(\mathbb{S}_{\phi}) \hookrightarrow X(\mathbb{S}_{\tau^{\vee}}) \leftrightarrow X_{\tau}$

 $X_{\tau}(z) = \{x \in X, x^2 = z, p(x) = \tau \in W\delta\}$

Example: $SL(2, \mathbb{R})$

 $G = SL(2,\mathbb{R})$ $G^{\vee} = PGL(2) = SO(3)$ $\phi(z) = \text{diag}(|z|^{\nu}, |z|^{-\nu}, 1)$ $\phi(j) = diag(-1, -1, 1)$ $\nu \neq 0$: Cent $(\phi) = \mathbb{C}^{\times}, \mathbb{S}_{\phi} = 1$ $\phi_c(\nu=0)$: Cent $(\phi_c) = O(2)$, $\mathbb{S}_{\phi_c} = \mathbb{Z}/2\mathbb{Z}$. $\nu \neq 0$: $\tau^{\vee} = 1$ (no choice) $\nu = 0$: ϕ is conjugate to $\phi'(z) = 1, \phi'_c(j) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ So $\tau^{\vee} = \mathbf{s}_{\circ}$

Example: $SL(2, \mathbb{R})$

Knapp-Stein: $R_{\sigma,\nu}$: defined in terms of the Plancherel measure, intertwining operators; reducibility of tempered representations Vogan: algebraic definition: reduction to the quasisplit case, R_{δ} Shelstad/Langlands: The group R_{ϕ} defined on the dual side:

$$1 \to \mathbb{S}_{\phi_M} \to \mathbb{S}_\phi \to R_\phi \to 1$$

 $R_{\phi} \simeq R(\sigma, \nu)$

This diagram commutes (not obvious):

$$\mathbb{S}_{\phi_c}/\mathbb{S}_{\phi} \simeq R(\sigma, 1)/R(\sigma, \nu)$$

 $\phi: W_{\mathbb{R}} \to^{L} G, \text{ tempered}$ $\phi \mapsto \phi_{c}$ $\Gamma: X(\mathbb{S}_{\phi_{c}}) \twoheadrightarrow X(S_{\phi})$ $(\phi, \chi) \in \Pi(G, \delta) \mapsto \pi(\phi, \chi)$

$$LKTs(\pi(\phi, \chi) = \{\mu(\phi_c, \tau) \mid \Gamma(\tau) = \chi\}$$

Question/Hope: is this the "right" formulation: does it generalize to the p-adic case?

Thank you (again) David - for everything!