Quantization, the [orbit method, and](#page-20-0) unitary representations

David Vogan

Quantization, the orbit method, and unitary representations

David Vogan

Department of Mathematics Massachusetts Institute of Technology

Representation Theory, Geometry, and Quantization: May 28–June 1 2018

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Outline

[Physics: a view from a neighboring galaxy](#page-2-0)

[Classical representation theory](#page-8-0)

[History of the orbit method in two slides](#page-10-0)

[Hyperbolic coadjoint orbits for reductive groups](#page-12-0)

[Elliptic coadjoint orbits for reductive groups](#page-16-0)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H

Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$

Energy ←→ special skew-adjoint operator *A*⁰

Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$

Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$

Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \longleftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \longleftrightarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \leftarrow $[A_0, A] = 0$

Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system \longleftrightarrow complex Hilbert space H States \longleftrightarrow lines in H Observables ←→ linear operators {*A^j* } on H Expected value of obs $A \leftrightarrow \langle Av, v \rangle$ Energy ←→ special skew-adjoint operator *A*⁰ Time evolution \longleftrightarrow unitary group $t \mapsto \exp(tA_0)$ Observable *A* conserved \leftarrow $[A_0, A] = 0$ Moral of the story: quantum mechanics is about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Unitary repn is Hilbert space \mathcal{H}_{π} with action $G \times H_{\pi} \rightarrow H_{\pi}$, $(q, v) \mapsto \pi(q)v$ respecting inner product: $\langle v, w \rangle = \langle \pi(q) v, \pi(q) w \rangle$. π is irreducible if has exactly two invt subspaces. Unitary dual problem: find G_{μ} = unitary irreps of *G*. $X \in \text{Lie}(G) \rightsquigarrow$ skew-adjoint operator $d\pi(X)$:

 $\pi(tX) = \exp(t d\pi(X)).$

Moral of the story: unitary representations are about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Unitary repn is Hilbert space \mathcal{H}_{π} with action

 $G \times H_{\pi} \rightarrow H_{\pi}$, $(q, v) \mapsto \pi(q)v$

respecting inner product: $\langle v, w \rangle = \langle \pi(g) v, \pi(g) w \rangle$.

 π is irreducible if has exactly two invt subspaces. Unitary dual problem: find G_{μ} = unitary irreps of *G*. $X \in \text{Lie}(G) \rightsquigarrow$ skew-adjoint operator $d\pi(X)$:

 $\pi(tX) = \exp(t d\pi(X)).$

Moral of the story: unitary representations are about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Unitary repn is Hilbert space \mathcal{H}_{π} with action

 $G \times H_{\pi} \rightarrow H_{\pi}$, $(q, v) \mapsto \pi(q)v$ respecting inner product: $\langle v, w \rangle = \langle \pi(q) v, \pi(q) w \rangle$. π is irreducible if has exactly two invt subspaces. Unitary dual problem: find \hat{G}_{μ} = unitary irreps of *G*. $X \in \text{Lie}(G) \rightsquigarrow$ skew-adjoint operator $d\pi(X)$: $\pi(tX) = \exp(t d\pi(X)).$

Moral of the story: unitary representations are about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Unitary repn is Hilbert space \mathcal{H}_{π} with action

 $G \times H_{\pi} \rightarrow H_{\pi}$, $(q, v) \mapsto \pi(q)v$ respecting inner product: $\langle v, w \rangle = \langle \pi(q) v, \pi(q) w \rangle$. π is irreducible if has exactly two invt subspaces. Unitary dual problem: find G_u = unitary irreps of *G*. $X \in \text{Lie}(G) \rightsquigarrow$ skew-adjoint operator $d\pi(X)$:

 $\pi(tX) = \exp(t d\pi(X)).$

Moral of the story: unitary representations are about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Unitary repn is Hilbert space \mathcal{H}_{π} with action

 $G \times H_{\pi} \rightarrow H_{\pi}$, $(q, v) \mapsto \pi(q)v$ respecting inner product: $\langle v, w \rangle = \langle \pi(q) v, \pi(q) w \rangle$. π is irreducible if has exactly two invt subspaces. Unitary dual problem: find \hat{G}_{μ} = unitary irreps of *G*. $X \in \text{Lie}(G) \rightsquigarrow$ skew-adjoint operator $d\pi(X)$:

 $\pi(tX) = \exp(t d\pi(X)).$

Moral of the story: unitary representations are about Hilbert spaces and Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

One of Kostant's greatest contributions was understanding the power of the analogy

unitary repns Hilb space, Lie alg of ops \Leftrightarrow quantum mech systems Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard too. How does an analogy help?

Physicists have a cheat sheet!

There is an easier version of quantum mechanics called classical mechanics. Theories related by

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

One of Kostant's greatest contributions was understanding the power of the analogy

unitary repns Hilb space, Lie alg of ops \Leftrightarrow quantum mech systems Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard too. How does an analogy help?

Physicists have a cheat sheet!

There is an easier version of quantum mechanics called classical mechanics. Theories related by

classical mech −→ quantum mech

KORK ERKERY EL ARA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

One of Kostant's greatest contributions was understanding the power of the analogy

unitary repns Hilb space, Lie alg of ops \Leftrightarrow quantum mech systems Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard too. How does an analogy help?

Physicists have a cheat sheet!

There is an easier version of quantum mechanics called classical mechanics. Theories related by

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

One of Kostant's greatest contributions was understanding the power of the analogy

unitary repns Hilb space, Lie alg of ops \Leftrightarrow quantum mech systems Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard too. How does an analogy help?

Physicists have a cheat sheet!

There is an easier version of quantum mechanics called classical mechanics. Theories related by

−→ classical mech quantum mech**A DIA K B A SA A SA A SA A SA A SA SA SA BA**

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

One of Kostant's greatest contributions was understanding the power of the analogy

unitary repns Hilb space, Lie alg of ops \Leftrightarrow quantum mech systems Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard too. How does an analogy help?

Physicists have a cheat sheet!

There is an easier version of quantum mechanics called classical mechanics. Theories related by

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Symplectic manifold is manifold M with Lie algebra structure {, } *on C*∞(*M*) *satisfying*

 ${a, bc} = {a, b}c + b{a, c}$

and a nondegeneracy condition. Any smooth function *f* on *M* defines

Hamiltonian vector field $\xi_f = \{f, \cdot\}.$

Example: $M = \text{cotangent bundle.}$ Example: $M =$ Kahler manifold.

Example: $M = \text{conjugacy class of } n \times n \text{ matrices.}$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Symplectic manifold is manifold M with Lie algebra structure {, } *on C*∞(*M*) *satisfying*

 ${a, bc} = {a, b}c + b{a, c}$

and a nondegeneracy condition. Any smooth function *f* on *M* defines

Hamiltonian vector field $\xi_f = \{f, \cdot\}.$

Example: $M = \text{cotangent bundle.}$ Example: $M =$ Kahler manifold. Example: $M = \text{conjugacy class of } n \times n \text{ matrices.}$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Symplectic manifold is manifold M with Lie algebra structure {, } *on C*∞(*M*) *satisfying*

 ${a, bc} = {a, b}c + b{a, c}$

and a nondegeneracy condition. Any smooth function *f* on *M* defines

Hamiltonian vector field $\xi_f = \{f, \cdot\}.$

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Example: $M = \text{cotangent bundle}$. Example: $M =$ Kahler manifold. Example: $M = \text{conjugacy class of } n \times n \text{ matrices.}$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Symplectic manifold is manifold M with Lie algebra structure {, } *on C*∞(*M*) *satisfying*

 ${a, bc} = {a, b}c + b{a, c}$

and a nondegeneracy condition. Any smooth function *f* on *M* defines

Hamiltonian vector field $\xi_f = \{f, \cdot\}.$

Example: $M = \text{cotangent bundle}$.

Example: $M =$ Kahler manifold.

Example: $M =$ conjugacy class of $n \times n$ matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Physics](#page-2-0)

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Symplectic manifold is manifold M with Lie algebra structure {, } *on C*∞(*M*) *satisfying*

 ${a, bc} = {a, b}c + b{a, c}$

and a nondegeneracy condition. Any smooth function *f* on *M* defines

Hamiltonian vector field $\xi_f = \{f, \cdot\}.$

Example: $M = \text{cotangent bundle}$.

Example: $M =$ Kahler manifold.

Example: $M = \text{conjugacy class of } n \times n \text{ matrices.}$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Pictures

Some conjugacy classes of 2×2 real matrices

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Physics](#page-2-0)

[Hyperbolic orbits](#page-12-0)

Pictures

Some conjugacy classes of 2×2 real matrices

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Physics](#page-2-0)

[Hyperbolic orbits](#page-12-0)

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*₀ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { a_0, a } = 0 Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M*

Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*₀ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { a_0, a } = 0 Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*₀ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { a_0, a } = 0 Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*₀ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { a_0, a } = 0 Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*⁰ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { a_0, a } = 0 Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*⁰ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { $a_0, a_1 = 0$ } Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*⁰ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { $a_0, a_1 = 0$ }

Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Physical system ←→ symplectic manifold *M* States ←→ points in *M* Observables ←→ smooth functions {*a^j* } on *M* Value of obs *a* on state $m \leftrightarrow a(m)$ Energy ←→ special real-valued function *a*⁰ Time evolution ←→ flow of vector field ξ_{a_0} Observable *A* conserved \longleftrightarrow { $a_0, a_1 = 0$ } Moral of the story: classical mechanics is about symplectic manifolds and Poisson Lie algebras.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Representation theory and physics

Here's how Kostant's analogy looks now.

unitary repns quantum mech system
Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical

symplectic manifold

Hilb space, Lie alg of ops

limit quantization ↑↓ classical limit

Hamiltonian *G*-space classical mech system

symplectic manifold

symplectic manifold

Poisson Lie alg of fns Poisson Lie alg of fns

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Representations](#page-8-0)

That is, the analogy suggests that there is a classical analogue of unitary representations.

Should make irreducible unitary correspond to

Must make sense of ↑↓. Physics ↑↓ not our problem.

A DIA K B A SA A SA A SA A SA A SA SA SA BA
Here's how Kostant's analogy looks now.

unitary repns quantum mech system
space, Lie alg of ops \overleftrightarrow{B} Hilb space, Lie alg of ops Hilb space, Lie alg of ops quantization ↑↓ classical limit quantization ↑↓ classical limit Hamiltonian *G*-space classical mech system
symplectic manifold symplectic manifold symplectic manifold Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical analogue of unitary representations.

Should make irreducible unitary correspond to

Must make sense of ↑↓. Physics ↑↓ not our problem.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Here's how Kostant's analogy looks now.

unitary repns quantum mech system
space, Lie alg of ops \overleftrightarrow{B} Hilb space, Lie alg of ops Hilb space, Lie alg of ops quantization ↑↓ classical Hamiltonian *G*-space classical mech system
symplectic manifold symplectic manifold Poisson Lie alg of fns Poisson Lie alg of fns

limit quantization ↑↓ classical limit

symplectic manifold

That is, the analogy suggests that there is a classical analogue of unitary representations.

Should make irreducible unitary correspond to

Must make sense of ↑↓. Physics ↑↓ not our problem.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Here's how Kostant's analogy looks now.

unitary repns quantum mech system
space, Lie alg of ops \overleftrightarrow{B} Hilb space, Lie alg of ops Hilb space, Lie alg of ops quantization ↑↓ classical Hamiltonian *G*-space classical mech system
symplectic manifold symplectic manifold

limit quantization ↑↓ classical limit

symplectic manifold Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical analogue of unitary representations.

Should make irreducible unitary correspond to homogeneous Hamiltonian.

Must make sense of ↑↓. Physics ↑↓ not our problem.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Here's how Kostant's analogy looks now.

unitary repns quantum mech system
space, Lie alg of ops \overleftrightarrow{H} Hilb space, Lie alg of ops Hilb space, Lie alg of ops quantization ↑↓ classical Hamiltonian *G*-space classical mech system
symplectic manifold symplectic manifold

limit quantization ↑↓ classical limit

symplectic manifold Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical analogue of unitary representations.

Should make irreducible unitary correspond to homogeneous Hamiltonian.

Must make sense of ↑↓. Physics ↑↓ not our problem.

KORK ERKERY EL ARA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *}$ \rightsquigarrow $\xi_f \in \text{Vect}(M)$

Hamiltonian vector field

G action on $X \rightsquigarrow$ Lie alg hom $q \rightarrow$ Vect(*M*), $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) % ↓ % ↓ g → Vect(*M*) *^Y* [→] ^ξ*^Y fY*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Representations](#page-8-0)

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *} \rightsquigarrow \varepsilon_f \in Vect(M)$

Hamiltonian vector field

G action on $X \rightsquigarrow$ Lie alg hom $q \rightarrow$ Vect(*M*), $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) % ↓ % ↓ g → Vect(*M*) *^Y* [→] ^ξ*^Y fY*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Representations](#page-8-0)

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *} \rightsquigarrow \varepsilon_f \in Vect(M)$

Hamiltonian vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$.

M is a Hamiltonian *G*-space if this Lie algebra map lifts

C [∞](*M*) % ↓ % ↓ g → Vect(*M*) *^Y* [→] ^ξ*^Y fY*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Representations](#page-8-0)

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *} \rightsquigarrow \varepsilon_f \in Vect(M)$ **Hamiltonian** vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) % ↓ % ↓ g → Vect(*M*) *^Y* [→] ^ξ*^Y fY*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *}$ \rightsquigarrow $\xi_f \in \text{Vect}(M)$ **Hamiltonian** vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) \nearrow $g \rightarrow \text{Vect}(M)$ *fY* % ↓ *^Y* [→] ^ξ*^Y*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *}$ \rightsquigarrow $\xi_f \in \text{Vect}(M)$ **Hamiltonian** vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) \nearrow $g \rightarrow \text{Vect}(M)$ *fY* % ↓ *^Y* [→] ^ξ*^Y*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Representations](#page-8-0)

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *} \rightsquigarrow \varepsilon_f \in Vect(M)$ **Hamiltonian** vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) \nearrow $g \rightarrow \text{Vect}(M)$ *fY* % ↓ *^Y* [→] ^ξ*^Y*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Theorem (Kostant)

Homogeneous Hamiltonian G-space is the same thing (by moment map) as covering of an orbit of G on g ∗ *.*

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

^M manifold with Poisson bracket {, } on smooth functions

 ${f, *} \rightsquigarrow \varepsilon_f \in Vect(M)$ **Hamiltonian** vector field

G action on $X \rightsquigarrow$ Lie alg hom $g \rightarrow \text{Vect}(M)$, $Y \mapsto \xi_Y$. *M* is a Hamiltonian *G*-space if this Lie algebra map lifts

> *C* [∞](*M*) \nearrow $g \rightarrow \text{Vect}(M)$ *fY* % ↓ *^Y* [→] ^ξ*^Y*

Map $g \to C^{\infty}(M)$ same as moment map $\mu \colon M \to g^*.$

Theorem (Kostant)

Homogeneous Hamiltonian G-space is the same thing (by moment map) as covering of an orbit of G on g ∗ *.*

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu: X \to g^*$.

Kostant's theorem: homogeneous Hamiltonian G -space = covering of G -orbit on g^* .

Kostant's rep theory \leftrightarrow physics analogy now leads to Kirillov-Kostant philosophy of coadjt orbits:

 $\{$ irr unitary reps of G } =_{def} $\widehat{G}^{\{2\}}_{\longleftrightarrow} g^*/G$. (\star)

MORE PRECISELY. . . restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of *G*b: enough for interesting harmonic analysis.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu: X \to g^*$. Kostant's theorem: homogeneous Hamiltonian G-space = covering of G-orbit on g^* .

Kostant's rep theory \leftrightarrow physics analogy now leads to Kirillov-Kostant philosophy of coadjt orbits:

 $\{$ irr unitary reps of G } =_{def} $\widehat{G}^{\{2\}}_{\longleftrightarrow} g^*/G$. (\star)

MORE PRECISELY. . . restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of *G*b: enough for interesting harmonic analysis.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu: X \to g^*$. Kostant's theorem: homogeneous Hamiltonian G-space = covering of G-orbit on g^* . Kostant's rep theory \leftrightarrow physics analogy now leads to Kirillov-Kostant philosophy of coadjt orbits:

 $\{$ irr unitary reps of G } =_{def} $\widehat{G}^{\{2\}}_{\longleftrightarrow} g^*/G$. (\star)

MORE PRECISELY. . . restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of *G*b: enough for interesting harmonic analysis.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu: X \to g^*$. Kostant's theorem: homogeneous Hamiltonian G-space = covering of G-orbit on g^* .

Kostant's rep theory \leftrightarrow physics analogy now leads to Kirillov-Kostant philosophy of coadjt orbits:

$$
\{\text{irr unitary} \text{ reps of } G\} =_{\text{def}} \widehat{G}^?_{\leftrightarrow g^*}/G. \qquad (*)
$$

MORE PRECISELY. . . restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of *G*b: enough for interesting harmonic analysis.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Recall: Hamiltonian *G*-space *X* comes with (*G*-equivariant) moment map $\mu: X \to g^*$. Kostant's theorem: homogeneous Hamiltonian G-space = covering of G-orbit on g^* .

Kostant's rep theory \leftrightarrow physics analogy now leads to Kirillov-Kostant philosophy of coadjt orbits:

 $\{$ irr unitary reps of G } =_{def} $\widehat{G} \stackrel{?}{\leadsto} g^*/G$. (★)

MORE PRECISELY. . . restrict right side to "admissible" orbits (integrality cond). Expect to find "almost all" of \widehat{G} : enough for interesting harmonic analysis.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

With the caveat about restricting to admissible orbits... \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open. Actually (\star) is false for connected nonabelian reductive *G*.

But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits... \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov)

General idea $(*)$, without physics motivation, due to Kirillov.

(\star) true for *G* type I solvable (Auslander-Kostant).

 (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open.

Actually (\star) is false for connected nonabelian reductive *G*. But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits...

 \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open.

Actually (\star) is false for connected nonabelian reductive *G*. But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits...

 \hat{G} ⇔ g^{*}/ G . (*)

A DIA K B A SA A SA A SA A SA A SA SA SA BA

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open. Actually (\star) is false for connected nonabelian reductive *G*.

But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

With the caveat about restricting to admissible orbits...

 \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open. Actually (\star) is false for connected nonabelian reductive *G*.

But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits...

 \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open.

Actually (\star) is false for connected nonabelian reductive *G*. But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits...

 \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open. Actually $(*)$ is false for connected nonabelian reductive G .

But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

With the caveat about restricting to admissible orbits. . .

 \hat{G} ⇔ g^{*}/ G . (*)

 (\star) true for *G* simply connected nilpotent (Kirillov) General idea $(*)$, without physics motivation, due to Kirillov. (\star) true for *G* type I solvable (Auslander-Kostant). (\star) for algebraic *G* reduces to reductive *G* (Duflo). Case of reductive *G* is still open.

Actually $(*)$ is false for connected nonabelian reductive G . But there are still theorems close to (\star) .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Orbit method](#page-10-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard. 2. start with representation, seek coadjt orbit. Easy.
- Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $g \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$ Orbits of G on $g^* \subset$ conjugacy classes of matrices.

Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-eqvt}}{\simeq} g^*$ Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $q \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-}eq\text{vt}}{\approx} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $g \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-}eq\text{vt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

Two ways to study representations for reductive *G*:

- 1. start with coadjt orbit, seek representation. Hard.
- 2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to do mathematics in the Ford administration, I find this challenging. (Gave up chewing gum at that time.)

Reductive Lie group $G =$ closed subgp of $GL(n,\mathbb{R})$ which is closed under transpose, and $#G/G_0 < \infty$.

From now on *G* is reductive.

Lie(G) = $g \subset n \times n$ matrices. Bilinear form $T(X, Y) = \text{tr}(XY) \Rightarrow g \stackrel{G\text{-}eq\text{vt}}{\simeq} g^*$

Orbits of G on $g^* \subset$ conjugacy classes of matrices. Orbits of $GL(n,\mathbb{R})$ on $\mathfrak{g}^* =$ conj classes of matrices.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

First example: hyperbolic orbits

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(X, Y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann$ variety of *p*-dimensional subspaces of R *n* . ^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*. $O_{p,q}(x, y) \to Gr(p, n), \qquad \lambda \mapsto x$ eigenspace exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive *G*: *O* ⊂ g^{*} hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

First example: hyperbolic orbits

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define Gr(*p*, *ⁿ*) = Grassmann variety of *p*-dimensional subspaces of R *n* . ^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*. $O_{p,q}(x, y) \to Gr(p, n), \qquad \lambda \mapsto x$ eigenspace exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive *G*: *O* ⊂ g^{*} hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)
$G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann variety of$ *p*-dimensional subspaces of R *n* . ^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*.

 $O_{p,q}(x, y) \to Gr(p, n), \quad \lambda \mapsto x$ eigenspace

exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive *G*: *O* ⊂ g^{*} hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann variety of$ *p*-dimensional subspaces of R *n* .

^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*.

 $O_{p,q}(x, y) \to Gr(p, n), \quad \lambda \mapsto x$ eigenspace exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive *G*: *O* ⊂ g^{*} hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

A DIA K B A SA A SA A SA A SA A SA SA SA BA

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann variety of$ *p*-dimensional subspaces of R *n* . ^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*. $O_{p,q}(x, y) \to Gr(p, n), \qquad \lambda \mapsto x$ eigenspace exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive *G*: *O* ⊂ g^{*} hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann variety of$ *p*-dimensional subspaces of R *n* .

^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*.

 $O_{p,q}(x, y) \to Gr(p, n), \qquad \lambda \mapsto x$ eigenspace

exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive $G: O \subset g^*$ hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

A DIA K B A SA A SA A SA A SA A SA SA SA BA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(n, \mathbb{R})$, $n = p + q$, $x > y$ real numbers

 $O_{p,q}(x, y) =_{\text{def}}$ diagonalizable matrices with eigvalues *^x* (mult *^p*) and *^y* (mult *^q*).

Define $Gr(p, n) = Grassmann variety of$ *p*-dimensional subspaces of R *n* .

^O*p*,*^q* is Hamiltonian *^G*-space of dimension 2*pq*.

 $O_{p,q}(x, y) \to Gr(p, n), \qquad \lambda \mapsto x$ eigenspace

exhibits $O_{p,q}(x, y)$ as affine bundle over $Gr(p, n)$

General reductive $G: O \subset g^*$ hyperbolic if elements are diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Classical physics example:

configuration space $X =$ manifold of positions.

State space $T^*(X) = \frac{\text{symplectic manifold of}}{\text{positions and momenta}}$.

 $\mathcal{H}=L^2(X)$

= square-integrable half-densities on *X*

 $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration. oscillation of wave function \leftrightarrow velocity.

Hamiltonian *G*-space *M* ≈ T^*

unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.

KORK ERKERY EL ARA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Classical physics example:

configuration space $X =$ manifold of positions. State space $T^*(X) = \begin{cases} \text{symplectic manifold of} \ \text{of} \end{cases}$

 $\mathcal{H}=L^2(X)$ = square-integrable half-densities on *X* $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration. oscillation of wave function \leftrightarrow velocity.

Hamiltonian *G*-space *M* ≈ T^*

unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.

KORK ERKERY EL ARA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Classical physics example:

configuration space $X =$ manifold of positions. State space $T^*(X) = \begin{cases} \text{symplectic manifold of} \ \text{of} \end{cases}$

Quantization

$$
\mathcal{H}=L^2(X)
$$

 $=$ square-integrable half-densities on X $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration. oscillation of wave function \leftrightarrow velocity.

Hamiltonian *G*-space *M* ≈ T^* unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

KORK ERKERY EL ARA

Classical physics example:

configuration space $X =$ manifold of positions. State space $T^*(X) = \begin{cases} \text{symplectic manifold of} \ \text{of} \end{cases}$

Quantization

$$
\mathcal{H} = L^2(X)
$$

 $=$ square-integrable half-densities on X

 $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration.

oscillation of wave function \leftrightarrow velocity.

Hamiltonian *G*-space *M* ≈ T^*

unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.

KORK ERKERY EL ARA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Classical physics example:

configuration space $X =$ manifold of positions. State space $T^*(X) = \begin{cases} \text{symplectic manifold of} \ \text{of} \end{cases}$

Quantization

$$
\mathcal{H} = L^2(X)
$$

 $=$ square-integrable half-densities on X

 $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration. oscillation of wave function \leftrightarrow velocity.

Hamiltonian *G*-space *M* ≈ T^* unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.**KORK ERKERY EL ARA**

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Classical physics example:

configuration space $X =$ manifold of positions. State space $T^*(X) = \begin{cases} \text{symplectic manifold of} \ \text{of} \end{cases}$

Quantization

$$
\mathcal{H} = L^2(X)
$$

 $=$ square-integrable half-densities on X

 $=$ wave functions for quantum system.

Size of wave function \leftrightarrow probability of configuration. oscillation of wave function \leftrightarrow velocity.

Kostant-Kirillov idea:

Hamiltonian *G*-space $M \approx T^*(X)$ \implies

unitary representation $\approx L^2(X) =$ square-integrable half-densities on *X*.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Hyperbolic orbits](#page-12-0)

KORK ERKERY EL ARA

Two $GL(n,\mathbb{R})$ -equivariant real line bdles on $Gr(p, n)$:

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S;$
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ 1 ⊗ L*iy* 2

Unitary representations of *GL*(*n*,R) associated to coadjoint orbits $O_{p,q}(x, y)$ are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Two $GL(n,\mathbb{R})$ -equivariant real line bdles on $Gr(p, n)$:

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S$;
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ 1 ⊗ L*iy* 2

Unitary representations of *GL*(*n*,R) associated to coadjoint orbits $O_{p,q}(x, y)$ are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Two $GL(n,\mathbb{R})$ -equivariant real line bdles on $Gr(p, n)$:

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S$;
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ 1 ⊗ L*iy* 2

Unitary representations of *GL*(*n*,R) associated to coadjoint orbits $O_{p,q}(x, y)$ are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Two *GL*(*n*, R)-equivariant real line bdles on Gr(*p*, *n*):

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S$;
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ $j_1^{ix} \otimes \mathcal{L}_2^{iy}$.

Unitary representations of *GL*(*n*,R) associated to coadjoint orbits $O_{n,q}(x, y)$ are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Two *GL*(*n*,R)-equivariant real line bdles on Gr(*p*, *ⁿ*):

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S$;
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ $j_1^{ix} \otimes \mathcal{L}_2^{iy}$.

Unitary representations of $GL(n,\mathbb{R})$ associated to coadjoint orbits $O_{p,q}(x, y)$ are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Two *GL*(*n*,R)-equivariant real line bdles on Gr(*p*, *ⁿ*):

- 1. \mathcal{L}_1 : fiber at *p*-diml $S \subset \mathbb{R}^n$ is $\bigwedge^p S$;
- 2. \mathcal{L}_2 : fiber at *S* is $\wedge^{n-p}(\mathbb{R}^n/S)$.

Real numbers x and $y \rightsquigarrow$ Hermitian line bundle

 $\mathcal{L}(x, y) = \mathcal{L}_1^{ix}$ 1 ⊗ L*iy* 2

Unitary representations of $GL(n,\mathbb{R})$ associated to coadjoint orbits ^O*p*,*q*(*x*, *^y*) are

$$
\pi_{p,q}(x,y)=L^2(\mathrm{Gr}(p,n),\mathcal{L}(x,y)).
$$

Same techniques (still for reductive *G*) deal with all hyperbolic coadjoint orbits.

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$ $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2n². Define a complex manifold

> $X=$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \to X$, $\lambda \mapsto ix$ eigenspace

is isomorphism $O_e(X) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

Always ≃ open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-88-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)[l](#page-15-0)[e](#page-16-0)[r.](#page-20-0)
استحقاقی دیگاه دیگاه دهان

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$ $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2n². Define a complex manifold

> $X=$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \rightarrow X$, $\lambda \mapsto ix$ eigenspace

is isomorphism $O_e(X) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

Always ≃ open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-89-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)[l](#page-15-0)[e](#page-16-0)[r.](#page-20-0)
استحقاقی دیگاه دیگاه دهان

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

$O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

 $X=$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \to X$, $\lambda \mapsto ix$ eigenspace

is isomorphism $O_e(X) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

Always ≃ open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-90-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)[l](#page-15-0)[e](#page-16-0)[r.](#page-20-0)
استحقاقی دیگاه دیگاه دهان

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

> $X =$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \to X$, $\lambda \mapsto ix$ eigenspace

is isomorphism $O_e(x) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

A[l](#page-15-0)ways \simeq \simeq \simeq open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-91-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)le[r.](#page-20-0)
All the state state state is a completed on the state is the state state state is the state of the state state i

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

> $X =$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$.

 $O_e(X) \to X$, $\lambda \mapsto iX$ eigenspace

is isomorphism $O_e(x) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

A[l](#page-15-0)ways \simeq \simeq \simeq open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-92-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)le[r.](#page-20-0)
All the state state state is a completed on the state is the state state state is the state of the state state i

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 $G = GL(2n, \mathbb{R}), x > 0$ real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

> $X =$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \to X$, $\lambda \mapsto ix$ eigenspace is isomorphism $O_e(x) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

A[l](#page-15-0)ways \simeq \simeq \simeq open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-93-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)le[r.](#page-20-0)
All the state state state is a completed on the state is the state state state is the state of the state state i

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

$$
G = GL(2n, \mathbb{R}), x > 0
$$
 real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

> $X =$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \rightarrow X$, $\lambda \mapsto ix$ eigenspace is isomorphism $O_e(x) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

Always ' open orbit *X* on cplx fl[ag](#page-94-0) [va](#page-20-0)[r](#page-19-0)[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)[l](#page-15-0)[e](#page-16-0)[r.](#page-20-0)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

$$
G = GL(2n, \mathbb{R}), x > 0
$$
 real number

 $O_e(x) =_{def}$ real matrices λ with $\lambda^2 = -x^2I$

 $=$ diagonalizable λ with eigenvalues $\pm xi$.

 $O_e(x)$ is Hamiltonian *G*-space of dimension 2 n^2 . Define a complex manifold

> $X =$ complex structures on \mathbb{R}^{2n} \simeq *n*-dimensional complex subspaces $S \subset \mathbb{C}^{2n}$ such that $S + \overline{S} = \mathbb{C}^{2n}$

Last condition is open, so X open in $Gr_{\mathbb{C}}(n, 2n)$. $O_e(x) \rightarrow X$, $\lambda \mapsto ix$ eigenspace

is isomorphism $O_e(x) \simeq X$

General reductive $G: O \subset \mathfrak{g}^*$ elliptic if elements are diagonalizable with purely imaginary eigenvalues.

Always ~ open o[r](#page-19-0)bit *X* on cplx fl[ag](#page-95-0) [va](#page-20-0)r[iety](#page-20-0)[:](#page-15-0) [K](#page-16-0)[äh](#page-20-0)[l](#page-15-0)[e](#page-16-0)[r.](#page-20-0)
All the setting and the setting

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$.

Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$.

Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$.

These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_xv)$.

Kähler structure is positive if all *g^x* are positive; signature (*p*, *^q*) if all *^g^x* have signature (*p*, *^q*)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\left(\begin{array}{c|c} 2 & 1 \end{array}\right)$ ((2) $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$.

Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$.

These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_xv)$.

Kähler structure is positive if all *g^x* are positive; signature (*p*, *^q*) if all *^g^x* have signature (*p*, *^q*)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\left(\begin{array}{c|c} 2 & 1 \end{array}\right)$ ((2) $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$. Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$. These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_xv)$. Kähler structure is positive if all *g^x* are positive; signature (*p*, *^q*) if all *^g^x* have signature (*p*, *^q*) Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\left(\begin{array}{c|c} 2 & 1 \end{array}\right)$ ((2) $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$ Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$. Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$. These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_x v)$.

Kähler structure is positive if all *g^x* are positive; signature (*p*, *^q*) if all *^g^x* have signature (*p*, *^q*)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\left(\begin{array}{c|c} 2 & 1 \end{array}\right)$ ((2) $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$. Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$. These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_x v)$.

Kähler structure is positive if all *g^x* are positive; signature (p, q) if all q_x have signature (p, q)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\left(\begin{array}{c|c} 2 & 1 \end{array}\right)$ ((2) $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\rm x}X$ has symp form $\omega_{\rm x}$. Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$. These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, i_xv)$. Kähler structure is positive if all *g^x* are positive; signature (p, q) if all q_x have signature (p, q)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$ $\binom{n}{2}$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

First, complex manifold X: real space T_xX has complex structure j_x : real linear aut, $j_x^2 = -I$. Second, symplectic: $T_{\chi}X$ has symp form ω_{χ} . Third, structures compatible: $\omega_x(j_xu, j_xv) = \omega_x(u, v)$. These structures define indefinite Riemannian structure $g_x(u, v) = \omega_x(u, j_xv)$.

Kähler structure is positive if all *g^x* are positive; signature (p, q) if all q_x have signature (p, q)

Example: $X =$ complex structures on \mathbb{R}^{2n} has signature $\left(\binom{n}{2},\binom{n+1}{2}\right)$ $\sqrt{2}$) $\sqrt{2}$ $\binom{n+1}{2}$ or $\left(\binom{n+1}{2}, \binom{n}{2}\right)$ $\binom{n}{2}$

Positive Kähler structures are better, but here we can't have them. Need direction. . .

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Example: *^U*(*n*)/*U*(1) *ⁿ* has *n*! equivariant Kähler structures. Here's how. . .

1. Distinct reals $\ell = (\ell_1, \ldots, \ell_n) \rightsquigarrow U(n)$ coadjt orbit

 $O_e(\ell) = U(n) \cdot \text{diag}(i\ell_1, \ldots, i\ell_n);$

with natural symplectic structure.

2. Isomorphic to complex $X =$ complete flags in \mathbb{C}^n by

 $\lambda \in O_{\mathbf{e}}(\ell) \mapsto \left(\{0\} \subset \mathbb{C}^n_{i\ell_m}(\lambda) \subset \mathbb{C}^n_{i\ell_n}(\lambda) + \mathbb{C}^n_{i\ell_{n-1}}(\lambda) \subset \cdots \right);$

here $\mathbb{C}_{i\ell_j}^n(\lambda) =$ (one-diml) $i\ell_j$ -eigenspace of λ .

3. Define σ = permutation putting ℓ in decreasing order.
4. Jeannembians with $X = \{z \in \mathbb{R}^n : z \in \mathbb{R}^n$

4. Isomorphism with $X \rightarrow$ Kähler structure of signature

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Example: *^U*(*n*)/*U*(1) *ⁿ* has *n*! equivariant Kähler structures. Here's how. . .

1. Distinct reals $\ell = (\ell_1, \ldots, \ell_n) \rightsquigarrow U(n)$ coadjt orbit

 $O_e(\ell) = U(n) \cdot \text{diag}(i\ell_1, \ldots, i\ell_n);$ with natural symplectic structure.

2. Isomorphic to complex $X =$ complete flags in \mathbb{C}^n by

 $\lambda \in O_{\mathbf{e}}(\ell) \mapsto \left(\{0\} \subset \mathbb{C}^n_{i\ell_m}(\lambda) \subset \mathbb{C}^n_{i\ell_n}(\lambda) + \mathbb{C}^n_{i\ell_{n-1}}(\lambda) \subset \cdots \right);$

here $\mathbb{C}_{i\ell_j}^n(\lambda) =$ (one-diml) $i\ell_j$ -eigenspace of λ .

3. Define σ = permutation putting ℓ in decreasing order.
4. Jeannembians with $X = \{z \in \mathbb{R}^n : z \in \mathbb{R}^n$

4. Isomorphism with $X \rightarrow$ Kähler structure of signature

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Example: *^U*(*n*)/*U*(1) *ⁿ* has *n*! equivariant Kähler structures. Here's how. . .

1. Distinct reals $\ell = (\ell_1, \ldots, \ell_n) \rightsquigarrow U(n)$ coadjt orbit

 $O_e(\ell) = U(n) \cdot \text{diag}(i\ell_1, \ldots, i\ell_n);$

with natural symplectic structure.

2. Isomorphic to complex $X =$ complete flags in \mathbb{C}^n by

 $\lambda \in O_{\mathbf{e}}(\ell) \mapsto ((0) \subset \mathbb{C}^n_{i\ell_m}(\lambda) \subset \mathbb{C}^n_{i\ell_n}(\lambda) + \mathbb{C}^n_{i\ell_{n-1}}(\lambda) \subset \cdots);$

here $\mathbb{C}_{i\ell_j}^n(\lambda) =$ (one-diml) $i\ell_j$ -eigenspace of λ .

i`*j* 3. Define σ = permutation putting ℓ in decreasing order.
4. Jeannembians with $X = \{z \in \mathbb{R}^n : z \in \mathbb{R}^n$

4. Isomorphism with $X \rightarrow$ Kähler structure of signature

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Example: *^U*(*n*)/*U*(1) *ⁿ* has *n*! equivariant Kähler structures. Here's how. . .

1. Distinct reals $\ell = (\ell_1, \ldots, \ell_n) \rightsquigarrow U(n)$ coadjt orbit

 $O_e(\ell) = U(n) \cdot \text{diag}(i\ell_1, \ldots, i\ell_n);$

with natural symplectic structure.

2. Isomorphic to complex $X =$ complete flags in \mathbb{C}^n by

 $\lambda \in O_{\mathbf{e}}(\ell) \mapsto ((0) \subset \mathbb{C}^n_{i\ell_m}(\lambda) \subset \mathbb{C}^n_{i\ell_n}(\lambda) + \mathbb{C}^n_{i\ell_{n-1}}(\lambda) \subset \cdots);$

here $\mathbb{C}_{i\ell}^n(\lambda) =$ (one-diml) $i\ell_j$ -eigenspace of λ .

i`*j* 3. Define σ = permutation putting ℓ in decreasing order.

4. Isomorphism with $X \rightarrow$ Kähler structure of signature

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan
Dealing with indefinite Kähler

Example: *^U*(*n*)/*U*(1) *ⁿ* has *n*! equivariant Kähler structures. Here's how. . .

1. Distinct reals $\ell = (\ell_1, \ldots, \ell_n) \rightsquigarrow U(n)$ coadjt orbit

 $O_e(\ell) = U(n) \cdot \text{diag}(i\ell_1, \ldots, i\ell_n);$

with natural symplectic structure.

2. Isomorphic to complex $X =$ complete flags in \mathbb{C}^n by

 $\lambda \in O_{\mathbf{e}}(\ell) \mapsto ((0) \subset \mathbb{C}^n_{i\ell_m}(\lambda) \subset \mathbb{C}^n_{i\ell_n}(\lambda) + \mathbb{C}^n_{i\ell_{n-1}}(\lambda) \subset \cdots);$

here $\mathbb{C}_{i\ell}^n(\lambda) =$ (one-diml) $i\ell_j$ -eigenspace of λ .

- *i*`*j* 3. Define σ = permutation putting ℓ in decreasing order.
4. Jeographism with $X = \lvert G \rvert$ is developed in a signature.
- 4. Isomorphism with $X \rightsquigarrow$ Kähler structure of signature $\left(\binom{n}{2}-\ell(\sigma),\ell(\sigma)\right).$

David Vogan

[Elliptic orbits](#page-16-0)

A DIA K B A SA A SA A SA A SA A SA SA SA BA

How do you quantize a Kähler manifold?

Kostant-Auslander idea:

Hamiltonian *G*-space *X* positive Kähler unitary representation $= L^2$ holomorphic sections of holomorphic line bdle on *X*

But Kähler structures on

 $O_e(x) = 2n \times 2n$ real λ, $λ^2 = -x^2$

are both indefinite.

New idea comes from Borel-Weil-Bott theorem about compact groups (proved algebraically by Kostant)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

How do you quantize a Kähler manifold?

Kostant-Auslander idea:

Hamiltonian *G*-space *X* positive Kähler unitary representation $= L^2$ holomorphic sections of holomorphic line bdle on *X*

But Kähler structures on

 $O_e(x) = 2n \times 2n$ real *λ*, $λ^2 = -x^2$

are both indefinite.

New idea comes from Borel-Weil-Bott theorem about compact groups (proved algebraically by Kostant)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Elliptic orbits](#page-16-0)

A DIA K B A SA A SA A SA A SA A SA SA SA BA

How do you quantize a Kähler manifold?

Kostant-Auslander idea:

Hamiltonian *G*-space *X* positive Kähler unitary representation $= L^2$ holomorphic sections of holomorphic line bdle on *X*

But Kähler structures on

$$
O_e(x) = 2n \times 2n \text{ real } \lambda, \ \lambda^2 = -x^2
$$

are both indefinite.

New idea comes from Borel-Weil-Bott theorem about compact groups (proved algebraically by Kostant)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

Quantizing $U(n) \cdot diag(i\ell_1, \ldots, i\ell_n) \subset u(n)^*$

• distinct real now equation ℓ_1 (n, 1)(2) (mod \mathbb{Z}) E ℓ_j distinct real; now assume $\ell_j \equiv (n - 1)/2$ (mod Z). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

$$
\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n.
$$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write $E_u = \text{irr rep of } U(n)$ of highest weight μ .

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-111-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Elliptic orbits](#page-16-0)

 Ω

 ℓ_j distinct real; now assume $\ell_j \equiv (n - 1)/2$ (mod Z). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

$$
\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n.
$$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write $E_u = \text{irr rep of } U(n)$ of highest weight μ .

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-112-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

[Elliptic orbits](#page-16-0)

 Ω

 ℓ_i distinct real; now assume $\ell_i \equiv (n - 1)/2$ (mod \mathbb{Z}). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

 $\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write E_{μ} = irr rep of $U(n)$ of highest weight μ .

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-113-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)
2010 - Santa Baratter Mark Shirley Santa Bara

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 ℓ_j distinct real; now assume $\ell_j \equiv (n - 1)/2$ (mod Z). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

 $\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write E_{μ} = irr rep of $U(n)$ of highest weight μ .

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-114-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)
2010 - Santa Baratter Mark Shirley Santa Bara

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 ℓ_i distinct real; now assume $\ell_i \equiv (n - 1)/2$ (mod \mathbb{Z}). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

 $\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write E_{μ} = irr rep of $U(n)$ of highest weight μ .

Theorem (Borel-Weil-Bott-Kostant) *Write* $O_{\ell-p}$ = *sheaf of germs of hol secs of* $\mathcal{L}_{\ell-p}$ *. Then* $H^p(X, O_{\ell-p}) =$ $\left\{\right.$ $\overline{\mathcal{L}}$ E_μ $\rho = \ell(\sigma)$
0 otherwise.

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-115-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 ℓ_i distinct real; now assume $\ell_i \equiv (n - 1)/2$ (mod Z). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

 $\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for *U*(*n*). Write E_{μ} = irr rep of $U(n)$ of highest weight μ .

Theorem (Borel-Weil-Bott-Kostant) *Write* $O_{\ell-\rho}$ = *sheaf of germs of hol secs of* $\mathcal{L}_{\ell-\rho}$ *. Then* $H^p(X, O_{\ell-p}) =$ $\left\{ \right.$ $\overline{\mathcal{L}}$ E_μ $\rho = \ell(\sigma)$
0 otherwise.

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-116-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)
28 ABA 193 ABA 193 ABA 193 ABA 193 ABA 193 ABA 193 ABA 194 ABA 194 ABA 194 ABA 194 ABA 194 ABA 194 ABA 195 ABA

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan

 ℓ_i distinct real; now assume $\ell_i \equiv (n - 1)/2$ (mod Z). Put

$$
\rho=((n-1)/2,(n-3)/2,\ldots,(-n+1)/2)\in\mathbb{R}^n
$$

 $\ell - \rho = (\ell_1 - (n-1)/2, \ldots, \ell_n + (n-1)/2) \in \mathbb{Z}^n$

Get $\mathcal{L}_{\ell-\rho}$ hol line bdle on $X = \text{flags in } \mathbb{C}^n$. Recall $\sigma \cdot \ell$ decr; so $\mu = \sigma \ell - \rho =$ dom wt for $U(n)$. Write E_{μ} = irr rep of $U(n)$ of highest weight μ .

Theorem (Borel-Weil-Bott-Kostant) *Write* $O_{\ell-\rho}$ = *sheaf of germs of hol secs of* $\mathcal{L}_{\ell-\rho}$ *. Then* $H^p(X, O_{\ell-p}) =$ $\left\{ \right.$ $\overline{\mathcal{L}}$ E_μ $\rho = \ell(\sigma)$
0 otherwise.

Moral of the story: look for representations not in holomorphic sections, but in cohomological degree given by signature of Kähler [me](#page-117-0)[tri](#page-20-0)[c](#page-19-0)[.](#page-20-0)
Charles and the second the second

Quantization, the [orbit method, and](#page-0-0) unitary representations

David Vogan