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Quantum mechanics

Physical system←→ complex Hilbert space H

States←→ lines in H

Observables ←→ linear operators {Aj } on H

Expected value of obs A←→ 〈Av , v〉

Energy←→ special skew-adjoint operator A0

Time evolution←→ unitary group t 7→ exp(tA0)

Observable A conserved←→ [A0,A] = 0

Moral of the story: quantum mechanics is about
Hilbert spaces and Lie algebras.
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Unitary representations of a Lie group G

Unitary repn is Hilbert space Hπ with action

G ×Hπ → Hπ, (g, v) 7→ π(g)v

respecting inner product: 〈v ,w〉 = 〈π(g)v , π(g)w〉.
π is irreducible if has exactly two invt subspaces.

Unitary dual problem: find Ĝu = unitary irreps of G.
X ∈ Lie(G) skew-adjoint operator dπ(X ):

π(tX ) = exp(tdπ(X )).

Moral of the story: unitary representations are about
Hilbert spaces and Lie algebras.
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Here’s the big idea

One of Kostant’s greatest contributions was
understanding the power of the analogy

unitary repns
Hilb space, Lie alg of ops

!
quantum mech systems

Hilb space, Lie alg of ops

Unitary repns are hard, but quantum mech is hard
too. How does an analogy help?
Physicists have a cheat sheet!
There is an easier version of quantum mechanics
called classical mechanics. Theories related by

classical mech
quantization
−→

classical limit
←−

quantum mech
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A little bit of background

Symplectic manifold is manifold M with Lie algebra
structure {, } on C∞(M) satisfying

{a,bc} = {a,b}c + b{a, c}

and a nondegeneracy condition.
Any smooth function f on M defines

Hamiltonian vector field ξf = {f , ·}.

Example: M = cotangent bundle.
Example: M = Kahler manifold.
Example: M = conjugacy class of n × n matrices.
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Pictures
Some conjugacy classes of 2 × 2 real matrices
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Classical mechanics

Physical system←→ symplectic manifold M

States←→ points in M

Observables ←→ smooth functions {aj } on M

Value of obs a on state m ←→ a(m)

Energy←→ special real-valued function a0

Time evolution←→ flow of vector field ξa0

Observable A conserved←→ {a0,a} = 0

Moral of the story: classical mechanics is about
symplectic manifolds and Poisson Lie algebras.
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Representation theory and physics

Here’s how Kostant’s analogy looks now.

unitary repns quantum mech system
!

Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical
limit quantization ↑↓ classical

limit

Hamiltonian G-space classical mech system
!

symplectic manifold symplectic manifold
Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical
analogue of unitary representations.
Should make irreducible unitary correspond to
homogeneous Hamiltonian.
Must make sense of ↑↓. Physics ↑↓ not our problem.



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

Representation theory and physics

Here’s how Kostant’s analogy looks now.

unitary repns quantum mech system
!

Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical
limit quantization ↑↓ classical

limit

Hamiltonian G-space classical mech system
!

symplectic manifold symplectic manifold
Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical
analogue of unitary representations.
Should make irreducible unitary correspond to
homogeneous Hamiltonian.
Must make sense of ↑↓. Physics ↑↓ not our problem.



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

Representation theory and physics

Here’s how Kostant’s analogy looks now.

unitary repns quantum mech system
!

Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical
limit quantization ↑↓ classical

limit

Hamiltonian G-space classical mech system
!

symplectic manifold symplectic manifold
Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical
analogue of unitary representations.
Should make irreducible unitary correspond to
homogeneous Hamiltonian.
Must make sense of ↑↓. Physics ↑↓ not our problem.



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

Representation theory and physics

Here’s how Kostant’s analogy looks now.

unitary repns quantum mech system
!

Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical
limit quantization ↑↓ classical

limit

Hamiltonian G-space classical mech system
!

symplectic manifold symplectic manifold
Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical
analogue of unitary representations.
Should make irreducible unitary correspond to
homogeneous Hamiltonian.
Must make sense of ↑↓. Physics ↑↓ not our problem.



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

Representation theory and physics

Here’s how Kostant’s analogy looks now.

unitary repns quantum mech system
!

Hilb space, Lie alg of ops Hilb space, Lie alg of ops

quantization ↑↓ classical
limit quantization ↑↓ classical

limit

Hamiltonian G-space classical mech system
!

symplectic manifold symplectic manifold
Poisson Lie alg of fns Poisson Lie alg of fns

That is, the analogy suggests that there is a classical
analogue of unitary representations.
Should make irreducible unitary correspond to
homogeneous Hamiltonian.
Must make sense of ↑↓. Physics ↑↓ not our problem.



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

What’s a Hamiltonian G-space?

M manifold with Poisson bracket {, } on smooth functions

{f , ∗} ξf ∈ Vect(M) Hamiltonian
vector field

G action on X  Lie alg hom g→ Vect(M), Y 7→ ξY .
M is a Hamiltonian G-space if this Lie algebra map lifts

C∞(M)
↗ ↓

g → Vect(M)

fY
↗ ↓

Y → ξY

Map g→ C∞(M) same as moment map µ : M → g∗.

Theorem (Kostant)
Homogeneous Hamiltonian G-space is the same thing
(by moment map) as covering of an orbit of G on g∗.
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Method of coadjoint orbits

Recall: Hamiltonian G-space X comes with
(G-equivariant) moment map µ : X → g∗.
Kostant’s theorem: homogeneous Hamiltonian
G-space = covering of G-orbit on g∗.
Kostant’s rep theory! physics analogy now leads to
Kirillov-Kostant philosophy of coadjt orbits:

{irr unitary reps of G} =def Ĝ
?
!g∗/G. (?)

MORE PRECISELY. . . restrict right side to “admissible”
orbits (integrality cond). Expect to find “almost all” of Ĝ:
enough for interesting harmonic analysis.
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Evidence for orbit method

With the caveat about restricting to admissible orbits. . .

Ĝ
?
! g

∗/G. (?)

(?) true for G simply connected nilpotent (Kirillov)

General idea (?), without physics motivation, due to Kirillov.

(?) true for G type I solvable (Auslander-Kostant).

(?) for algebraic G reduces to reductive G (Duflo).

Case of reductive G is still open.
Actually (?) is false for connected nonabelian reductive G.

But there are still theorems close to (?).
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Ĝ
?
! g

∗/G. (?)

(?) true for G simply connected nilpotent (Kirillov)

General idea (?), without physics motivation, due to Kirillov.

(?) true for G type I solvable (Auslander-Kostant).

(?) for algebraic G reduces to reductive G (Duflo).

Case of reductive G is still open.
Actually (?) is false for connected nonabelian reductive G.

But there are still theorems close to (?).



Quantization, the
orbit method, and

unitary
representations

David Vogan

Physics

Representations

Orbit method

Hyperbolic orbits

Elliptic orbits

Evidence for orbit method

With the caveat about restricting to admissible orbits. . .

Ĝ
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So concentrate on reductive groups. . .

Two ways to study representations for reductive G:
1. start with coadjt orbit, seek representation. Hard.
2. start with representation, seek coadjt orbit. Easy.

Really need to do both things at once. Having started to
do mathematics in the Ford administration, I find this
challenging. (Gave up chewing gum at that time.)

Reductive Lie group G = closed subgp of GL(n,R)
which is closed under transpose, and #G/G0 < ∞.

From now on G is reductive.

Lie(G) = g ⊂ n × n matrices. Bilinear form

T (X ,Y ) = tr(XY )⇒ g
G-eqvt
' g

∗

Orbits of G on g∗ ⊂ conjugacy classes of matrices.
Orbits of GL(n,R) on g∗ = conj classes of matrices.
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First example: hyperbolic orbits

G = GL(n,R), n = p + q, x > y real numbers

Op,q(x , y) =def diagonalizable matrices with
eigvalues x (mult p) and y (mult q).

Define Gr(p,n) = Grassmann variety of
p-dimensional subspaces of Rn.
Op,q is Hamiltonian G-space of dimension 2pq.

Op,q(x , y)→ Gr(p,n), λ 7→ x eigenspace

exhibits Op,q(x , y) as affine bundle over Gr(p,n)

General reductive G: O ⊂ g∗ hyperbolic if elements are
diagonalizable with real eigenvalues.

Always affine bundle over a compact real flag variety.
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We pause for a word from our sponsor. . .

Classical physics example:

configuration space X = manifold of positions.

State space T ∗(X ) =
symplectic manifold of

positions and momenta.
Quantization

H = L2(X )

= square-integrable half-densities on X
= wave functions for quantum system.

Size of wave function! probability of configuration.
oscillation of wave function! velocity.

Kostant-Kirillov idea:
Hamiltonian G-space M ≈ T ∗(X ) =⇒

unitary representation ≈ L2(X ) = square-integrable
half-densities on X .
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Hyperbolic representations

Two GL(n,R)-equivariant real line bdles on Gr(p,n):
1. L1: fiber at p-diml S ⊂ Rn is

∧p S;
2. L2: fiber at S is

∧n−p(Rn/S).

Real numbers x and y  Hermitian line bundle

L(x , y) = Lix
1 ⊗ L

iy
2 .

Unitary representations of GL(n,R) associated to
coadjoint orbits Op,q(x , y) are

πp,q(x , y) = L2(Gr(p,n),L(x , y)).

Same techniques (still for reductive G) deal with all
hyperbolic coadjoint orbits.
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Second example: elliptic orbits
G = GL(2n,R), x > 0 real number

Oe(x) =def real matrices λ with λ2 = −x2I
= diagonalizable λ with eigenvalues ±xi .

Oe(x) is Hamiltonian G-space of dimension 2n2.
Define a complex manifold

X = complex structures on R2n

' n-dimensional complex subspaces
S ⊂ C2n such that S + S = C2n

Last condition is open, so X open in GrC(n,2n).
Oe(x)→ X , λ 7→ ix eigenspace

is isomorphism Oe(x) ' X

General reductive G: O ⊂ g∗ elliptic if elements are
diagonalizable with purely imaginary eigenvalues.

Always ' open orbit X on cplx flag variety: Kähler.
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Remind me, what was a Kähler manifold?

First, complex manifold X : real space TxX has
complex structure jx : real linear aut, j2x = −I.
Second, symplectic: TxX has symp form ωx .
Third, structures compatible: ωx(jxu, jxv) = ωx(u, v).
These structures define indefinite Riemannian
structure gx(u, v) = ωx(u, jxv).
Kähler structure is positive if all gx are positive;
signature (p,q) if all gx have signature (p,q)
Example: X = complex structures on R2n has
signature

((
n
2

)
,
(
n+1

2

))
or

((
n+1

2

)
,
(
n
2

))
.

Positive Kähler structures are better, but here we
can’t have them. Need direction. . .
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Dealing with indefinite Kähler

Example: U(n)/U(1)n has n! equivariant Kähler
structures. Here’s how. . .

1. Distinct reals ` = (`1, . . . , `n) U(n) coadjt orbit

Oe(`) = U(n) · diag(i`1, . . . , i`n);

with natural symplectic structure.

2. Isomorphic to complex X = complete flags in Cn by

λ ∈ Oe(`) 7→
(
{0} ⊂ Cn

i`m
(λ) ⊂ Cn

i`n
(λ) + Cn

i`n−1
(λ) ⊂ · · ·

)
;

here Cn
i`j
(λ) = (one-diml) i`j -eigenspace of λ.

3. Define σ = permutation putting ` in decreasing order.
4. Isomorphism with X  Kähler structure of signature(

(n
2) − `(σ), `(σ)

)
.
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How do you quantize a Kähler manifold?

Kostant-Auslander idea:

Hamiltonian G-space X positive Kähler =⇒

unitary representation = L2 holomorphic sections
of holomorphic line bdle on X

But Kähler structures on
Oe(x) = 2n × 2n real λ, λ2 = −x2

are both indefinite.
New idea comes from Borel-Weil-Bott theorem about
compact groups (proved algebraically by Kostant)
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are both indefinite.
New idea comes from Borel-Weil-Bott theorem about
compact groups (proved algebraically by Kostant)
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Quantizing U(n) · diag(i`1, . . . , i`n) ⊂ u(n)∗

`j distinct real; now assume `j ≡ (n − 1)/2 (mod Z). Put

ρ = ((n − 1)/2, (n − 3)/2, . . . , (−n + 1)/2) ∈ Rn

` − ρ = (`1 − (n − 1)/2, . . . , `n + (n − 1)/2) ∈ Zn.

Get L`−ρ hol line bdle on X = flags in Cn.
Recall σ · ` decr; so µ = σ` − ρ = dom wt for U(n).
Write Eµ = irr rep of U(n) of highest weight µ.

Theorem (Borel-Weil-Bott-Kostant)
Write O`−ρ = sheaf of germs of hol secs of L`−ρ. Then

Hp(X ,O`−ρ) =

Eµ p = `(σ)

0 otherwise.

Moral of the story: look for representations not in
holomorphic sections, but in cohomological degree
given by signature of Kähler metric.
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