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Kostant’s interest in the Buckyball

He didn’t like the Brooklyn Dodgers
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“Lie group representations on polynomial rings” (1963)

Kostant’s most highly cited paper in Math Reviews

Let N be nilpotent cone in g. Kostant showed

N is a normal variety
The defining ideal of N is generated by

u1, . . . ,u`,

a set of basic invariants in Sg∗. Assume deg(u`) = h.
As a module for G, write

C•[N ] ' ⊕pλVλ

where pλ = qmλ
1 + · · ·+ qmλ

`λ . Then

`λ = dim V T
λ .

These exponents are called the generalized exponents of λ.
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Key fact

Let e be a principal nilpotent and e,h, f basis of sl2-triple.

Form slice
v := f + ge.

The C∗-action on v coming from h and scaling so that that f is in
degree 0.

Then ge is graded in degrees 2m1 + 2, . . . ,2m` + 2, where m1, . . . ,m`

are the usual exponents.

Restrict ui to v. Then

Theorem (Kostant)

ui has linear term when expressed in the graded basis of ge.
Jacobian matrix of ui ’s is rank ` everywhere on v, including at f .
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Explicit list of basic invariants

Can take a possible list and restrict to a Cartan subalgebra h.
Look for a point where determinant of Jacobian is nonzero.

Take a possible single basic invariant and restrict to v and see that
it has a linear term.

Theorem
The invariants

tr((ad X )2), . . . tr((ad X )di ), . . . tr((ad X )30)

is a list of basic invariants for E8.

Can use smaller representations for other types if adjoint
representation doesn’t work (e.g., if there is an odd fundamental
degree).
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Example in MAGMA

Adjoint representation of the slice v for F4, using 4 variables:
m[1],m[2],m[3],m[4].

Linear term in each case.
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Usual exponents

When λ = θ is the highest root, the generalized exponents are the
usual exponents.

Two ways to see this:
Generalized exponents come from grading of

V ge

λ = gg
e ⊂ ge.

Have equality since ge is abelian.
Fix i . Then {

∂ui

∂xj

}
is a basis of a copy of the adjoint representation in Sg∗.
Non-zero on N ; in fact, the copies are linearly independent.

So {di − 1} are generalized exponents for λ = θ.
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Applications to intersections

N ∩ h = {0}. Functions at 0 are

Sh∗/(positive invariants) ' H∗(G/B).

Starting point to look at O ∩ h.
We obtain cohomology of Springer fiber for dual orbit in type A.

Kraft, De Concini-Procesi, Tanisaki, Carrell

N ∩ Sf ′ for smaller nilpotent, where

Sf ′ = f ′ + ge′

Also can do this by replacing N by smaller nilpotent orbit O:

O ∩ Sf ′ .

Brieskorn, Slodowy, Kraft-Procesi, Fu-Juteau-Levy-S.
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Subregular slice

Let f ′ be in the subregular orbit. Take slice to f ′:

Sf ′ = f ′ + ge′

This has dimension `+ 2.

Then u1, . . . ,u`−1 have (linearly independent) linear terms on Sf ′ .

While u` of highest degree, the Coxeter number, is exactly the defining
equation in the remaining three dimensions of an ADE-singularity.

Carried out by Slodowy
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Example in E6

The latter is the equation for the E6 singularity in C3: x2 + y3 + z4 = 0.
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Singularities in E6
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Find equations for other orbits

Weyman for GLn(C).
O = Oλ
λ = (λ1, λ2, ...) partition of n

Let ki = λ1 + λ2 + · · ·+ λi − i + 1

Equations come from subspace of ki × ki -minors isomorphic to
representation of highest weight $i +$n−i , plus the basic
invariants.

Hook λ = (a,1, ...1).

Minimal generators: all a× a minors. Rank conditions plus basic
invariants up to degree a.
Almost rectangular: λ = (a,a, ....a,b).

Minimal generators: Just need a copy of the adjoint in degree a
and basic invariants up to degree a.

Take entries X a where X = (xij) is a generic matrix for a copy of
the adjoint rep.
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Broer’s result on the subregular orbit

Let φ be the dominant short root.
The highest generalized exponent for Vφ occurs in ht(φ) degree,
the dual Coxeter number. This is true for any representation Vλ.
The ideal for the subregular nilpotent variety is given by a copy of

Vφ in this top degree

together with
u1, . . . ,u`−1.

These are minimal generators.
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Main result

Let Ω be a set of orthogonal, short, simple roots. Let s = |Ω|.
Let nΩ be nilradical of the parabolic subalgebra attached to Ω.

Let OΩ be the Richardson orbit in nΩ.

These orbits were considered by Broer in Kostant 65th volume.

For s = 1, we get the subregular orbit. For s = 0, we get principal
nilpotent orbit.
Let r be dimension of zero weight space of Vφ, which is the
number of short simple roots, and order the generalized
exponents for Vφ by mφ

1 ≤ · · · ≤ mφ
r .

Theorem (Johnson, S-)

The ideal for OΩ is minimally generated by:
a copy of Vφ in either degree mφ

r−s+1 or mφ
b r

2 c
.

(sometimes) a copy of Vφ is degree mφ
r−s+2.

r − s of the basic invariants
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Main result

Theorem (Johnson, S-, arXiv:1706.04820)

The ideal for OΩ is minimally generated by:
a copy of Vφ in either degree mφ

r−s+1 or mφ
b r

2 c
.

(sometimes) a copy of Vφ is degree mφ
r−s+2.

r − s of the basic invariants
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Flat basis

Pick a basis {xi} of g and a dual basis {yi} with respect to the
Killing form (·, ·).
Let p and q be two homogeneous invariants of degree a + 1 and
b + 1, respectively. Then

p ◦ q :=
∑

i
∂p
∂xi

∂q
∂yi

is again an invariant.

Homogeneous of degree a + b.
Saito’s flat basis, first considered in a paper by Saito, Yano,
Sekiguchi: unique basis (up to scalars) with
ui ◦ uj ∈ C[u1, . . . ,u`−1] + cu`, where c is a constant.
De Concini, Papi, Procesi:
ui ◦ uj a generator of the invariants when ui ◦ uj is the degree of
some uk .
A weaker statement is true in type D2k .
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Containment of ideals

Consider the copy of the adjoint representation Vui determined by
ui by taking derivatives.
Take its ideal (Vui ) in C[N ].

Theorem (Johnson, S-)
The following are equivalent:

Containment: Vuj ⊂ (Vui )

There exists an invariant p such that p ◦ ui = uj modulo
expressions in lower degree invariants.

Hence, by DPP result, containment question, outside of D2k , is
equivalent to (mj + 1)−mi is an exponent. This helps us find minimal
generators.
For example, in E7, adjoint rep in degree 13 is not in the ideal
generated by copy in degree 11, but it is in ideal generated by copy in
degree 9, since 3 is not an exponent, but 5 is.
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Cohomology on the resolution

Next we search for a set of generators. Let P = PΩ. Consider the
Springer type map:

G ×P nΩ → OΩ

If this is a resolution,

C[OΩ] = C[G ×P nΩ] = H0(G/P,S•n∗Ω)

For Ω = ∅, OΩ is regular nilpotent orbit.

C[N ] = C[Oreg] = C[G ×B n] = H0(G/B,S•n∗)

Paper by R. Brylinski (Twisted Ideals paper):
thinking about ideals in C[N ] coming from cohomology
subregular ideal
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Twisted ideals

Higher vanishing

H i(G/B,S•n∗ ⊗ Cµ) = 0 for i > 0 when
µ = 0 (Borho-Kraft, Hesselink)
µ dominant (Broer)
µ slightly not dominant (Broer)

To compute the occurrences of Vλ in H0, compute Euler characteristic∑
(−1)iH i , and thus replace S•u∗ by a sum of one-dimensional

representations and then use Bott-Borel-Weil:

Bott-Borel-Weil

H i(G/B,Cλ) = 0 except if w · λ is dominant and i = `(w), in which
case it is Vw ·λ. Here, w ∈W , the Weyl group, is unique.

Conclude: H0(G/B,S•u∗ ⊗ Cµ) is computable in terms of Lusztig’s
q-analog of Kostant weight multiplicity.
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Twisted Ideals

Hence, multiplicity of Vλ in H0(G/B,S•u∗ ⊗ Cµ) is the dimension
of the µ-weight space in Vλ.
The graded version is an affine Kazhdan-Lusztig polynomial
(Lusztig).
If µ = 0, get a formula for generalized exponents and also get
another way of seeing that their number is dimension of the zero
weight space of Vλ.

Broer
For µ dominant:

H0(G/B,S•u∗ ⊗ Cµ)

will identify with an ideal in
C[N ]

and the unique copy of Vµ in lowest degree generates the ideal.
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Sketch proof in A3 with s = 2

Let Ω = {α1, α3}. Consider parabolic and nilradical for subregular: nα3 .
Take Koszul resolution:

0→ Sn−1n∗α3
⊗ Cα1 → Snn∗α3

→ Snn∗α1,α3
→ 0.

Take cohomology over G/B:

0→ H0(Sn−1n∗α3
⊗ Cα1)→ H0(Snn∗α3

)

→ H0(Snn∗α1,α3
)→ H1(Sn−1n∗α3

⊗ Cα1)→ . . . .

Key facts are that H1 vanishes and
H0(Sn−1n∗α3

⊗ Cα1) ' H0(Sn−2n∗α2
⊗ Cφ).

This is a generalization of Broer’s result for n when weights are slightly
not dominant (see next slide).

Hence, the ideal of the orbit is cut out by a copy of Vφ in degree 2 in
the closure of the subregular orbit. General case uses this kind of
induction.
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Type Al cohomological theorem

Let nm be the nilradical for the maximal parabolic in type Al with simple
root αm not in the Levi subalgebra.

Theorem (S-)

Let r be in the range −|l + 1− 2m| − 1 ≤ r ≤ 0. Then there is a
G-module isomorphism :

H i(Snn∗m ⊗ r$m) ' H i(Sn+rmn∗l+1−m ⊗−r$l+1−m)

for all i ,n ≥ 0.

This is always an isomorphism for H0 when r < 0.

Type A2

H i(Snn∗1 ⊗−$1) ' H i(Sn−1n∗2 ⊗$2)

Can use this A2 result in any bigger Lie algebra. In A3 it says
H i(Snn∗3 ⊗ α1) ' H i(Sn−1n∗2 ⊗ (α1 + α2 + α3)) since α1 has inner
product −1 with α2 and 0 with α3. This was the key fact on the
previous slide.
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