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Coadjoint orbits for GL(n,R)

G = GL(n,R), its Lie algebra

g0 = gl(n,R) = {n by n real matrices}.

The adjoint action

Ad(g)(X ) = gXg−1.

The invariant trace from

〈X ,Y 〉 = trXY

defines an identification

gl(n,R)∗ ←→ gl(n,R), and f 7→ X (f ) is defined by

f (Y ) = 〈X (f ),Y 〉.

It sends coadjoint orbits to adjoint orbits.



Jordan decomposition

Def Suppose X ∈ gl(n,R). We say that X is

nilpotent if X k = 0 for some k ;

semisimple if X is diagonalizable over C;

elliptic if X is diagonalizable and all eigenvalues are imaginary;

hyperbolic if X is diagonalizable and all eigenvalues are real.

Prop Given X ∈ gl(n,R), there are unique Xh,Xe ,Xn, s.t.

1) X = Xh + Xe + Xn.

2) Xh is hyperbolic, Xe is elliptic, and Xn is nilpotent.

3) Xh,Xe and Xn all commute with each other.

4) If Y commutes with X , then it commutes with Xh,Xe and Xn.
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Real reductive groups

The Cartan involution for GL(n,R) is the automorphism

θ(g) = tg−1.

Its differential θ(X ) = −tX .

Def A Lie group G (having finitely many components) is called
reductive, if there is a homomorphism η : G → GL(n,R), s.t.

1) Ker η is finite;

2) Im η is θ-stable.

We say G is semisimple if it is reductive and the center of the
connected identity component G0 is finite.

Write θ for the unique lift of θ to G which is trivial on Ker η.

This is defined to be the Cartan involution for G .

Write g0 for the Lie algebra of G and g for the complexification.

Let g0 = k0 + s0 and g = k + s be the Cartan decompositions.
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Coadjoint orbits for reductive groups

Use the trace form to identify g∗0 with g0.

The map f 7→ X (f ) is given by f (Y ) = 〈X (f ),Y 〉.

Prop Suppose G is are real reductive group, and X is in g0.

1) The Jordan components Xh,Xe ,Xn are in g0.

2) If X is hyperbolic, then it is conjugate to an element in s0.

3) If X is elliptic, then it is conjugate to an element in k0.

Def (Jordan Decomposition)

Let X (f ) = X (f )h + X (f )e + X (f )n be the Jordan decomposition.

Then the corresponding

f = fh + fe + fn

is defined to be the Jordan decomposition of f .
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Orbit method for reductive groups (Vogan [ICM 1986])
Suppose that f ∈ g∗0.

G (f ) = centralizer of X (f ) in G , g0(f ) = {Y ∈ g0 | [X (f ),Y ] = 0}.

We may replace f by a conjugate, and get

θfh = −fh, θfe = fe , and

G (fh), G (fe) and G (fs) = G (fh) ∩ G (fe) are preserved by θ.

Since Xe and Xn commute with Xh, and so belong to g(fh),
we can identify fe and fn (by restriction) with elements of g(fh)∗.
Thus,

G (fh) ⊃ [G (fh)](fe) ⊃ {[G (fh)](fe)}(fn);

these are the same groups as

G (fh) ⊃ G (fs) ⊃ G (f ).

Ĝ (f )→ Ĝ (fs)→ Ĝ (fh)→ Ĝ .
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Hyperbolic step: parabolic induction

Fix fh ∈ g∗0 hyperbolic, let Xh be the corresponding element in g0.

We have g0 =
∑
r∈R

gr0, g
r
0 = {Y ∈ g0 | [Xh,Y ] = rY }.

Then g0
0 = g0(fh), [gr0, g

s
0] ⊂ g r+s

0 , and 〈gr0, gs0〉 = 0 if r + s 6= 0.
Set

nh =
∑
r>0

gr0, a nilpotent subalgebra normalized by G (fh).

Write Nh = exp(nh).

Then Ph = G (fh)Nh is a parabolic subgroup of G .

The hyperbolic step Ĝ (fh)→ Ĝ is defined by

π 7→ IndG
Ph
π.
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Elliptic step: cohomological induction

Fix fe ∈ g∗0 elliptic, write Xe for the corresponding element in g0.

We have g =
∑
r∈R

gr , gr = {Y ∈ g| [iXe ,Y ] = rY }.

Then g0 = g(fe), [gr , gs ] ⊂ gr+s , and 〈gr , gs〉 = 0 if r + s 6= 0. Set

ue =
∑
r>0

gr , and

qe = g(fe) + ue ,

a θ-stable parabolic subalgebra normalized by G (fe).

The elliptic step Ĝ (fe)→ Ĝ is defined by

π 7→ Lqeπ.
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Nilpotent step: unipotent representations (‘unipotents’)

Example The ‘unipotents’ attached to 0 must be trivial on G0.

Some of ‘unipotents’ are attached to ‘associated cones’, that may

be regarded as limits of elliptic orbits (see conference poster).

Example G = SL2(R), these are limits of discrete series.

Using primitive ideal theory, Vogan defined

1) Special unipotents (Arthur, Barbasch-Vogan)

2) Distinguished unipotents

3) Weakly unipotents

{special unipotents}⊂{distinguished unipotents}⊂{weakly unipotents}

It remains to define ‘unipotents’.
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Dequantization

Given π ∈ Ĝ . Now we reverse the process of quantization and look
for the corresponding f = fh + fe + fn ∈ g∗0 attached to π.

Question Which π corresponds a semsimple element
f = fs = fh + fe?

Answer A tempered representation.

The ‘unipotents’ are those corresponding to
f = fn with fh = fe = 0.

The primary property of π is its infinitesimal character.

Let h be a Cartan subalgebra of g.

Write W = W (g, h) for the Weyl group. Then we have

Harish-Chandra isomorphsim ξ : Z (g)→ S(h)W .

Infl char ξΛ : Z (g)→ C is parametrized by W -orbits W · Λ in h∗.
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Parabolic induction: reduction to real infl char

Let H = TA be a θ-stable Cartan subgroup with CSA h0 = t0 + a0.

The canonical real form of the complexified CSA h is

RE h = it0 + a0.

Then Λ ∈ h∗ has a unique decomposition

Λ = RE Λ + i IM Λ.

This decomposition is independent of choices of θ-stable Cartan
subgroup H.

Thm [Knapp] π ∈ Ĝ . There is a P = MAN a parabolic subgroup
and δ ∈ M̂ with real infl char, and ν a unitary character of A, s.t.

π ∼= IndG
P (δ ⊗ ν).
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Cohomological induction in good range

Let q = l + u be a θ-stable parabolic subalgebra.

Let L be the normalizer of q in G .

We say that Z ∈ L̂ is in good range, if

〈ΛZ + ρ(u), β〉 > 0, ∀β ∈ ∆(u, h).

Thm (Vogan) The cohomological inducton Lq maps

Z ∈ L̂ in good range to a π = Lq(Z ) ∈ Ĝ .



Dirac operators and Vogan’s conjecture

Let ei be a basis for s and fi the dual basis with respect to the
trace form. The Dirac operator is defined by

D : =
∑

ei ⊗ fi ∈ U(g)⊗ C (s).

Vogan conjectured that D has the following property:

there is a natural algebra homomorphism ζ : Z (g)→ Z (k∆), s.t.
∀z ∈ Z (g) one has

z ⊗ 1− ζ(z) = Da + bD

for some a, b in U(g)⊗ C (s).

Vogan’s conjecture was verified by H-Pandžić [JAMS 2002].

The motivation of the conjecture is to show that

HD(V ) = HD(V ⊗ S) : = KerD/KerD ∩ ImD

detects the infinitesimal character of V .
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Dirac inequality and Dirac index
If π is unitary, then D is self-dual and HD(Xπ) = KerD = KerD2.

If Hom
K̃

(Eγ ,Xπ ⊗ S) 6= 0, then

〈Λ,Λ〉 ≤ 〈γ + ρc , γ + ρc〉.

Thm [H-Pandzic] The followings are equivalent:

1) HD(Xπ) 6= 0;

2) the equality in the Dirac inequality holds;

3) infl char Λ is conjugate to γ + ρc by Weyl group of g.

If dimG/K is even, then S = S+ ⊕ S− and the index
Xπ ⊗ S+ − Xπ ⊗ S− = H+

D (Xπ)− H−D (Xπ) is a virtual K̃ -module.

Vogan’s conjecture tells how to calculate this index.

Remark Vogan’s conjetcure has been extended to many different
setting: by Kostant to general (g, r), by Frajria-Kac-Papi to affine
Lie algebras, by Kumar for equivariant cohomology, by
Barbasch-Cibutaru-Trapa to graded Hecke algebras, ...
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Parabolic induction: further reduction to HD(X ) 6= 0

Conjecture:
Suppose that π ∈ Ĝ with real infl char and HD(Xπ) = 0.

Then there is

1) a P = MAN a parabolic subgroup,

2) σ ∈ M̂ with HD(Xσ) 6= 0,

3) ν a non-unitary character of A or trivial, s.t.

IndG
P (δ ⊗ tν)(0 ≤ t ≤ 1) is unitary and irreducible, and

π ∼= IndG
P (δ ⊗ ν).



Linear groups, regular infl char

Suppose that Gell the set of regular elliptic elements is not empty
and open.

Then G has discrete series representations.

Harish-Chandra showed that global characters of discrete series are
completely determined by the restriction to Gell .

If G is linear and the infi char Λ of π ∈ Ĝ is regular, then Λ is
strongly regular and

Xπ ∼= Aq(λ)

is cohomiologically induced from 1-dim representation [Salamanca].

HD(Aq(λ)) =
⊕

w∈W 1
l

Ew(λ+ρ).

H-Pandzic-Vogan [SciChinaMath 2017] showed that

HD(Xπ) essentially determines Xπ = Aq(λ).
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Definition of unipotents for linear groups

Suppose G is semisimple and connected.
1) If Λ = ρ, then only unipotent representation is trivial and
attached to the zero orbit.

2) If Λ = 0, then unipotents are tempered and attached to the
principal orbits.

Def Suppose that G is linear and π ∈ Ĝ has infl char Λ.
We say that π is unipotent, if

1) HD(Xπ) =
⊕

w∈W 1 EwΛ,

2) π is weakly unipotent, namely, any composition factor in
tensor product Xπ ⊗ F with finite-dim’l repn F of G has larger infl.
char.

Remark If π is unipotent and not trivial, then

1) infl char of π is singular,

2) infl char of π is small (inside the convex hull of W · ρ).
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Unipotents: Aq(λ) at weakly fair edge

Let q = l + u be a θ-stable parabolic subalgebra.

Let L be the normalizer of q in G .

We say that λ or Aq(λ) is at weakly fair edge, if

〈λ|c, β〉 = 0, ∀β ∈ ∆(u, h).

Here c is the center of l.

Fact If λ is weakly fair, then Aq(λ) is unitary.

Example SL(2n,R): Speh representations at the weakly fair edge

Infl char = (n − 1)e1 + (n − 3)e2 + · · ·+ (−n + 1)en;
LKT = (1, · · · , 1,±1).

Both are Aq(λ)-module at weakly fair edge with two different
θ-stable q (pp. 586-588 [Knapp-Vogan]).

Question Is every unipotent an Aq(λ) at weakly fair edge?
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Definition of unipotents for nonlinear groups
Def Suppose that G is reductive and π ∈ Ĝ has infl char Λ.
We say that π is called unipotent if

1) HD(Xπ) =
⊕

w∈W 1
[Λ]

EwΛ,

where Λ is the infl char of a K̃ -type in HD(Xπ) and W[Λ] is the
integral Weyl group.

2) π is weakly unipotent.

Remark Some unipotents show up in pairs (as twins).

If π and π′ are attached to the same orbit and satisfy

HD(Xπ)⊕ HD(Xπ′) =
⊕

w∈W 1

EwΛ,

then we say that they are associate.

Example The two irreducible components of the oscillator
representation are associate.
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Unipotents: Aq(λ) near weakly fair edge

Let q = l + u be a θ-stable parabolic subalgebra.

Let L be the normalizer of q in G .

We say that Aq(λ) is near weakly fair edge if

|〈λ|c, βv 〉| < 1,∀β ∈ ∆(u, h).

Here c is the center of l.

Fact If λ is at weakly fair edge and weakly unipotent, then Aq(λ)
is unitary. (Vogan [Invent 1985] pp 492-493.)

Example Speh representations for ˜SL(2n,R), infl char 1
2ρ.

There are four (two pairs of associates): Lucas [TAMS, 2008].

Their LKT are 1
2 (1, · · · , 1,±1) and 3

2 (1, · · · , 1,±1).

Remark There is one pair of associates for ˜GL(2n,R).
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Unipotents: the Oscillator representation

G = Sp(2n,R).

Let π and π′ be the two irreducible components of the oscillator
representation.

Both are attached to a minimal orbit.

Their infl char Λ is ρ(Bn) which is regular, and W[Λ] is of type Dn

(same as the Weyl group for SO∗(2n)).

HD(Xπ)⊕ HD(Xπ′) =
⊕

w∈W 1

EwΛ.

Neither π nor π′ is an Aq(λ)-module.

They are theta lifts of trivial and sign representations of O(1).



Unipotents in highest weight modules: Wallach modules

G = U(p, q),O∗(2n):
H-Pandzic-Protsak [PJM 2011] showed that Dirac cohomology of
any Wallach representation π

HD(Xπ) =
⊕

w∈W 1

EwΛ.

They are theta lifts from Howe dual pairs.

G = Sp(2n,R): any Wallach representation π has an associate π′.

HD(Xπ)⊕ HD(Xπ′) =
⊕

w∈W 1

EwΛ.

They are theta lift from trivial and the sign representations of

O(k) (k = 1, . . . , n).
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Unipotents and corresponding nilpotent orbits

The unipotents are constructed from

1) Aq(λ) at (or near) the weakly fair edge

2) Arthur’s packets

3) Theta lifting

4) Unitary degenerate principal series:

Rothschild-Wolf [Annales of E.N.S. 1974]

Matumoto-Trapa [Comp. Math. 2007]

5) Geometric quantization: Brylinski-Kostant on the minimal
representations of exceptional groups [PNAS 1994].

Problem Determine all unipotents and their correponding
nilpotent orbits (data).
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